USER MANUAL WIKI.COM RADIO TRRANSMER PINE रागिस्ड

Then It Was Stolen From...

## Radio Transmitting Tubes

The first publication in this book, ET-5—Radio Transmitting Tubes, lists all G-E transmitting tubes, essential technical data, and list prices.

Technical Descriptive Lulletins (GET) are filed in the first section of this book numerically by tube type number. Installation and Operation Instructions (GEH) are filed in the secondary section by publication number and an index to the instructions is provided. A copy of the standard Service Report used with General Electric tubes is included as the last publication in the second section.

Although the information is listed in loose-leaf form to facilitate revisions and additions, the General Electric Company reserves the right to change prices or other data without notice.

The book is recorded in your name as follows:

| Name    | Radio Officer John S. Baker    |
|---------|--------------------------------|
| Address | S.S. George Verity, U.S. Lines |
|         | c/o Postmaster                 |
|         | North Vork Neta Vork           |

List E-201



Schenectady, N. Y.

# **GENERAL % ELECTRIC**

Electronic Tubes for Radio Application

- High power water cooled tubes
- The screen grid tube
- Hot cathode, mercury vapor rectifiers
- Metal tubes for receivers
- Introverted anode for wide band television
- Small size vacuum capacitors
- Flexible diaphragm vacuum switches

These and many other G-E firsts combine with careful workmanship, exacting construction and rigid testing to provide you the finest in electronic tubes.

G.E. offers you a complete linevarying from tiny tubes a few inches high up to giant radio broadcasting tubes five feet high. There's a G-E tube for every electronic application.

Let G-E electronic engineers help select the proper tube for your application. For operating dependability, for long life, for maximum economy, specify G-E electronic tubes. Your nearest G-E electronic tube distributor or G-E office is ready to serve you.

If You Didn't Get This From My Site. Then It Was Stolen From... www.SteamPoweredRadio.Com

**Electronics** Department GENERAL % ELECTRIC

E-45, E-46, E-48, E-49, E-201, E-202, E-203, E-205



Prices Effective Dec. 1, 1944 **Electronic Tubes for Radio Applications** 

## **HIGH-VACUUM TYPES**

| 3                                                    |                                               |                                                                                              | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HODE                                        |                                                                                              | PI                                                                       | LATE                              |                                                                                                        | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . FREQ. MC.                                                                                       |                                      |                                                     |                                                    |
|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Type<br>No.                                          | Users'<br>Price                               | No. of<br>Elec-<br>trodes                                                                    | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amp.                                        | Max.<br>Volts                                                                                | Max.<br>Amp.                                                             | Max.<br>Input,<br>Watts           | Max.<br>Dissi-<br>pation,<br>Watts                                                                     | @<br>Max.<br>Plate<br>Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | @50%<br>Max.<br>Plate<br>Input                                                                    | Mu                                   | Gm                                                  | Bulletin<br>No.                                    |
| GL-146<br>GL-152<br>GL-159<br>GL-169<br>GL-203-A     | $\$15.00 \\ 15.00 \\ 60.00 \\ 60.00 \\ 10.00$ | 3<br>3<br>3<br>3<br>3<br>3                                                                   | $     \begin{array}{c}       10 \\       10 \\       10 \\       10 \\       10 \\       10     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.25<br>3.25<br>9.60<br>9.60<br>3.25        | $\begin{array}{c} 1500 \\ 1500 \\ 2000 \\ 2000 \\ 1250 \end{array}$                          | $\begin{array}{c} 0.200 \\ 0.200 \\ 0.400 \\ 0.400 \\ 0.175 \end{array}$ | $300 \\ 300 \\ 800 \\ 800 \\ 220$ | $125 \\ 125 \\ 250 \\ 250 \\ 100$                                                                      | $     \begin{array}{r}       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\       15 \\$ | $     \begin{array}{r}       60 \\       60 \\       35 \\       35 \\       80     \end{array} $ | $75 \\ 25 \\ 20 \\ 85 \\ 25$         |                                                     | ET-T81<br>ET-T11<br>GET-739<br>ET-T108<br>GET-501  |
| GL-204-A<br>GL-211<br>GL-242-C<br>GL-276-A<br>GL-800 | $85.00 \\ 10.00 \\ 12.00 \\ 12.00 \\ 10.00$   | 3 3 3 3<br>3 3 3 3                                                                           | $11 \\ 10 \\ 10 \\ 10 \\ 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3.85 \\ 3.25 \\ 3.25 \\ 3.0 \\ 3.25$       | $\begin{array}{c} 2500 \\ 1250 \\ 1250 \\ 1250 \\ 1250 \\ 1250 \end{array}$                  | $\begin{array}{c} 0.275 \\ 0.175 \\ 0.150 \\ 0.125 \\ 0.080 \end{array}$ | $690 \\ 220 \\ 188 \\ 156 \\ 100$ | $250 \\ 100 \\ 100 \\ 100 \\ 35$                                                                       | $     \begin{array}{r}       3 \\       15 \\       6 \\       20 \\       60     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 30 \\ 80 \\ 30 \\ 100 \\ 180 @ 55\% \end{array}$                                | $23 \\ 12 \\ 12.5 \\ 12 \\ 15 \\ 15$ |                                                     | GET-502<br>GET-503<br>GET-956<br>GET-955<br>ET-T59 |
| GL-801-A<br>GL-802                                   | $2.50 \\ 3.50$                                | 3<br>5                                                                                       | $7.5 \\ 6.3^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.25 \\ 0.90 \end{array}$ | 600<br>500                                                                                   | 0.070<br>0.060<br><b>0.060</b>                                           | 42<br>25                          | 20<br>10<br>13                                                                                         | $\begin{array}{c} 60\\ 30 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $120 \\ 100 @ 55\%$                                                                               | 8                                    | $\frac{1}{2250}$                                    | GET-761<br>ET-T57                                  |
| GL-803<br>GL-805                                     | $\begin{array}{c} 25.00\\ 10.00 \end{array}$  | $\frac{5}{3}$                                                                                | $\begin{array}{c} 10 \\ 10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 5.00 \\ 3.25 \end{array}$ | $2000 \\ 1500$                                                                               | $0.175 \\ 0.210$                                                         | $350 \\ 315$                      | $125 \\ 125$                                                                                           | $\frac{20}{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>80                                                                                          | ** **                                | 4000                                                | GET-759<br>GET-921                                 |
| GL-806                                               | 22.00                                         | 3                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0                                        | 3000                                                                                         | 0.200                                                                    | 600                               | 150                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                               | 12.6                                 |                                                     | ET-T72                                             |
| GL-807                                               | 2.25                                          | 5                                                                                            | 6.3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90                                        | <b>3300</b><br>600<br><b>750</b>                                                             | 0.300<br>0.100<br>0.100                                                  | 60<br>75                          | 225<br>25<br><b>30</b>                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125 @ 55%                                                                                         |                                      | 6000                                                | ET-T38                                             |
| GL-809                                               | 2.50                                          | 3                                                                                            | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50                                        | 750                                                                                          | 0.100                                                                    | 75                                | 25                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                               | 50                                   |                                                     | ET-T58                                             |
| GL-810                                               | 13.50                                         | 3                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.50                                        | <b>1000</b><br>2000<br><b>2250</b>                                                           | 0.100<br>0.250<br>0.275                                                  | 100<br>500<br>620                 | 30<br>125<br>150                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 100                                                                                             | 36                                   | ****                                                | ET-T99                                             |
| GL-811                                               | 3.50                                          | 3                                                                                            | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00                                        | 1250                                                                                         | 0.125                                                                    | 155                               | 40                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115                                                                                               | 160                                  |                                                     | GET-754                                            |
| GL-812                                               | 3.50                                          | 3                                                                                            | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00                                        | <b>1500</b><br>1250<br><b>1500</b>                                                           | 0.150<br>0.125<br>0.150                                                  | 255<br>155<br>225                 | 55<br>40<br>55                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 @ 60%                                                                                         | 29                                   |                                                     | ET-T71                                             |
| GL-813<br>GL-814                                     | $22.00 \\ 15.50$                              | 4<br>4                                                                                       | $\begin{array}{c} 10.0\\ 10.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 5.00\\ 3.25\end{array}$   | 2000<br>1250                                                                                 | 0.180<br>0.150<br>0.150                                                  | 360<br>180<br>225                 | 100<br>50                                                                                              | $\frac{30}{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ${}^{60}_{100}  {}^{00}_{0}  {}^{75\%}_{0}$                                                       | ****                                 | $\begin{array}{c} 3750\\ 3300 \end{array}$          | ET-T1<br>ET-T22                                    |
| GL-815                                               | 4.50                                          | 5†                                                                                           | $6.3^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8†                                        | 400<br><b>500</b>                                                                            | 0.150<br>0.150                                                           | 60<br>75                          | 20<br>25                                                                                               | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 225 @ 70%                                                                                         | 6.5                                  | 4000                                                | ET-T4                                              |
| GL-828                                               | 17.50                                         | 5                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.25                                        | 1250                                                                                         | 0.160                                                                    | 200                               | 70                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 @ $65\%$                                                                                       |                                      | 4500                                                | GET-986                                            |
| GL-829-B<br>GL-830-B                                 | $\begin{array}{c} 19.50\\ 10.00 \end{array}$  | $5^{\dagger}$                                                                                | $6.3 \\ 10.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.125 \\ 2.0$                              | 750<br>1000                                                                                  | $0.240 \\ 0.150$                                                         | $120 \\ 150$                      | $     40 \\     60   $                                                                                 | $\begin{array}{c} 200 \\ 15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | $\frac{1}{25}$                       | 8500                                                | GET-965<br>ET-T20                                  |
| GL-833-A                                             | 76.50                                         | 3                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                        | 4000                                                                                         | 0.500                                                                    | 1800                              | 400                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 @ 72 $\%$                                                                                      | 35                                   | ****                                                | ET-T3                                              |
| GL-835<br>GL-837<br>GL-838                           | $10.00 \\ 2.80 \\ 9.00$                       | 3<br>5<br>3                                                                                  | $10.0 \\ 12.6* \\ 10.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.25 \\ 0.70 \\ 3.25$                      | $     \begin{array}{r}       4000 \\       1250 \\       500 \\       1250     \end{array} $ | $0.175 \\ 0.080 \\ 0.175$                                                | 2000<br>220<br>32<br>220          | $     \begin{array}{r}       430 \\       100 \\       12 \\       100     \end{array} $               | $20 \\ 20 \\ 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $100 \\ 80 \\ 120$                                                                                | 12<br>                               | $\begin{array}{c} 3600\\ 3400\\ \ldots \end{array}$ | ET-T63<br>GET-750<br>GET-920                       |
| GL-842<br>GL-843<br>GL-845<br>GL-849<br>GL-851       | 3.25<br>1.65<br>10.00<br>120.00<br>160.00     | 3 3 3 3 3<br>3 3 3 3                                                                         | $7.5 \\ 2.5^* \\ 10.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ $ | $1.25 \\ 2.50 \\ 3.25 \\ 5.00 \\ 15.50$     | $\begin{array}{r} 425 \\ 450 \\ 1250 \\ 2500 \\ 2500 \end{array}$                            | $\begin{array}{c} 0.028 \\ 0.040 \\ 0.175 \\ 0.350 \\ 1.00 \end{array}$  | 875 $2500$                        | $     \begin{array}{r}       12 \\       15 \\       75 \\       400 \\       750 \\     \end{array} $ | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 @ 80%<br>30<br>15                                                                              | $3 \\ 7.7 \\ 5 \\ 19 \\ 20.5$        |                                                     | ET-T13<br>GET-751<br>GET-505<br>GET-489<br>ET-T41  |
| GL-860<br>GL-861<br>GL-1613<br>GL-1614<br>GL-1619    | 32.50<br>155.00<br>1.80<br>2.80<br>2.20       | $     \begin{array}{c}       4 \\       4 \\       5 \\       5 \\       4     \end{array} $ | $10.0 \\ 11.0 \\ 6.3^* \\ 6.3^* \\ 2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.25 \\ 10.0 \\ 0.70 \\ 0.90 \\ 2.0$       | $3000 \\ 3500 \\ 350 \\ 375 \\ 400$                                                          | $\begin{array}{c} 0.150 \\ 0.350 \\ 0.050 \\ 0.110 \\ 0.075 \end{array}$ | $300 \\ 1200 \\ 17.5 \\ 35 \\ 30$ | $100 \\ 400 \\ 10 \\ 21 \\ 15$                                                                         | $30 \\ 20 \\ 45 \\ 80 \\ 45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 120 \\ 60 \\ 90 @ 85\% \\ 120 @ 75\% \\ 90 @ 77\% \end{array}$                  | 200<br>300<br>                       | $1100 \\ 2400 \\ 2500 \\ 6050 \\ 4500$              | ET-T39<br>ET-T5<br>ET-T70<br>GET-769<br>GET-904    |
| GL-1623                                              | 2.50                                          | 3                                                                                            | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                         | 750                                                                                          | 0.100                                                                    | 75                                | 25                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115                                                                                               | 20                                   |                                                     | GET-748                                            |
| GL-8012                                              | 19.00                                         | 3                                                                                            | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                         | 1000                                                                                         | 0.080                                                                    | 50                                | <b>30</b><br>40                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600 @ 63%φ                                                                                        | 18                                   |                                                     | ET-T67                                             |

Figures in bold type are ICAS ratings.

\* Heater-type cathode.

† Per section.

<sup>‡</sup> Single- or two-phase filament. Voltage is per unit.

§ Single-, three-, or six-phase filament. Voltage is per strand, current is per terminal.

†† Single- or three-phase filament. Voltage is per strand, current is per strand.

¶ Quadrature operation.  $\triangle$ Surge-limiting diode operation.

 $\phi$  Maximum permissible percentage of only maximum plate voltage, the minimum plate input may be 100 per cent of its rated value.

## HIGH-VACUUM, AIR-COOLED TYPES

## Prices Effective Dec. 1, 1944

|                                                        |                                                                          |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                  |                                       |                                                                 |                                                           |                                                      |                                                                                           |                                                                               | 8                                     |
|--------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|
|                                                        | ×.                                                                       | Usors'                        |                            | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HODE                                                                          |                                                                                  | Р                                     | LATE                                                            |                                                           | MAX. F                                               | REQ. MC.                                                                                  |                                                                               |                                       |
| Type No.                                               | Users'<br>Price                                                          | Renewal<br>Price<br>***       | No. of<br>Elec-<br>trodes  | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amp                                                                           | Max.<br>Volts                                                                    | Max.<br>Amp                           | Max.<br>Plate<br>Input,<br>Watts                                | Max.<br>Dissi-<br>pation,<br>Watts                        | @Max.<br>Plate<br>Input                              | @50%<br>Max.<br>Plate<br>Input                                                            | Mu                                                                            | Bulletin<br>No.                       |
| GL-3C22<br>GL-833-A                                    | \$60.00<br>76.50                                                         |                               | 33                         | $\begin{array}{c} 6.3 \\ 10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2.0\\ 10 \end{array}$                                       | 1000<br>4000<br>4000                                                             | 0.150<br>0.500                        | 150<br>1800<br>2000                                             | 125<br>400                                                | 1000<br>20                                           | 75@65%                                                                                    | $\begin{array}{c} 40\\ 35\end{array}$                                         | ET-T3                                 |
| GL-889-R<br>GL-891-R                                   | $\begin{array}{c} 325.00\\ 410.00 \end{array}$                           | $\$295.00\ 310.00$            | 3<br>3                     | 11<br>11‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\substack{125\\60.0}$                                                        | 8500<br>10000                                                                    | $2.00 \\ 2.00$                        | $16000 \\ 15000$                                                | 5000<br>4000                                              | $\begin{array}{c} 25 \\ 1.6 \end{array}$             | 20                                                                                        | $\frac{21}{8}$                                                                | ET-T120<br>ET-T40                     |
| GL-892-R<br>GL-893A-R                                  | 410.00<br>800.00                                                         | $310.00 \\ 650.00 \\ 1050.00$ | 332                        | 11‡<br>10§                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.0<br>61.0§                                                                 | $12500 \\ 20000 \\ 17000$                                                        | $2.00 \\ 4.00 \\ 0.00$                | $     18000 \\     70000 \\     110000 $                        | 4000<br>20000                                             | 1.6 $5$                                              | $\begin{array}{c} 20\\ 25 \end{array}$                                                    | $50 \\ 36 \\ 27$                                                              | ET-T36<br>GET-959                     |
| GL-895-R<br>GL-8002-R<br>GL-8010A-R                    | $\begin{array}{c} 1250.00 \\ 125.00 \\ 55.00 \end{array}$                | 1050.00                       | 3<br>3                     | 19 #<br>16<br>5.7*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       138 \\       38.0 \\       2.0     \end{array} $ | $     \begin{array}{r}       17000 \\       3500 \\       1100     \end{array} $ | 9.00<br>1.00<br>0.100                 | 3000                                                            | $ \begin{array}{c c} 20000 \\ 1200 \\ 50 \end{array} $    | $\begin{array}{c} & & \\ 120 \\ 350 \end{array}$     | 200                                                                                       | $     \begin{array}{r}       37 \\       20.5 \\       30     \end{array}   $ | ET-T16<br>GET-980                     |
| HIGH-VAC                                               | UUM, 1                                                                   | WATER-                        | COOLE                      | D TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ES                                                                            |                                                                                  |                                       |                                                                 |                                                           |                                                      |                                                                                           |                                                                               |                                       |
| GL-207<br>GL-846<br>GL-858<br>GL-862-A**               | \$220.00<br>200.00<br>275.00<br>750.00                                   |                               | 3<br>3<br>3<br>3           | $     \begin{array}{c}       22 \\       11 \\       22 \\       33     \end{array}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $51.0 \\ 51.0 \\ 52.0 \\ 207.0$                                               | $\begin{array}{c} 15000 \\ 7500 \\ 20000 \\ 20000 \end{array}$                   | $2.00 \\ 1.00 \\ 2.00 \\ 10.00$       | $\begin{array}{c} 30000 \\ 7500 \\ 40000 \\ 200000 \end{array}$ | $\begin{array}{c c}10000\\2500\\20000\\100000\end{array}$ | $egin{array}{c} 1.5 \\ 50 \\ 1.5 \\ 1.6 \end{array}$ | $     \begin{array}{c}       20 \\       150 \\       40 \\       \dots     \end{array} $ | $20 \\ 40 \\ 42 \\ 48$                                                        | ET-T49<br>GET-603<br>ET-T25<br>ET-T50 |
| GL-880<br>GL-889<br>GL-891<br>GL-892                   | 350.00<br>175.00<br>285.00<br>190.00                                     |                               | 3<br>3<br>3<br>3           | $12.6 \\ 11 \\ 11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{\ddagger}_{11^{}_{11^{}}_{11^{}_{11^{}}_{11^{}_{11^{}}_{11^{}_{11^{}}_{11^{}}_{11^{}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11^{}}_{11}}_{11^{}}_{11^{}}_{11}}}}}}}}}}$ | $320.0 \\ 125 \\ 60.0 \\ 60.0$                                                | $10500 \\ 8500 \\ 12000 \\ 15000$                                                | $6.0 \\ 2.00 \\ 2.00 \\ 2.00 \\ 2.00$ | $\begin{array}{c} 60000\\ 16000\\ 18000\\ 30000 \end{array}$    | $20000 \\ 5000 \\ 6000 \\ 10000$                          | $25 \\ 50 \\ 1.6 \\ 1.6$                             | $100 \\ 150 \\ 20 \\ 20$                                                                  | $20 \\ 21 \\ 8 \\ 50$                                                         | ET-T128<br>ET-T18<br>ET-T9<br>ET-T110 |
| GL-893-A<br>GL-895<br>GL-898-A**<br>GL-8002<br>GL-8009 | $\begin{array}{c} 450.00\\ 950.00\\ 750.00\\ 110.00\\ 450.00\end{array}$ |                               | 3<br>3<br>3<br>3<br>3<br>3 | $10 \ 19 \ \# \ 16.5 \ 16 \ 12.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.0<br>138<br>70.0††<br>38<br>320                                            | $20000 \\ 17000 \\ 20000 \\ 3500 \\ 10500$                                       | $4.00 \\ 9 \\ 10.00 \\ 1.00 \\ 6.00$  | $70000 \\ 140000 \\ 200000 \\ 3000 \\ 60000$                    | $20000 \\ 40000 \\ 100000 \\ 1200 \\ 20000$               | $5\\6\\1.6\\150\\25$                                 | 40<br><br>300<br>100                                                                      | $36 \\ 37 \\ 45 \\ 20.5 \\ 20$                                                | ET-T69<br>ET-T109<br>ET-T15<br>ET-T14 |

## **MERCURY-VAPOR RECTIFIERS**

|                          |                                              | No. of          | CATI       | HODE      | Max.             | Aug                      |                    |   | COC                     | DLED TYPES                                                                                    |                  |
|--------------------------|----------------------------------------------|-----------------|------------|-----------|------------------|--------------------------|--------------------|---|-------------------------|-----------------------------------------------------------------------------------------------|------------------|
| Type No.                 | Users'<br>Price                              | Elec-<br>trodes | Volts      | Amp       | Peak<br>Inverse  | Plate<br>Amp.            | Bulletin<br>No.    | - | Cat. No.                | Used On<br>Tube Type                                                                          | Users'<br>Prices |
| GL-266-B                 | \$160.00                                     | 2               | 5          | 30        | 22000            | 5.0                      | GET-745            |   | 5182028P1               | $\left\{\begin{array}{c} \text{GL-862-A}\\ \text{GL-880}\\ \text{OL-880} \end{array}\right\}$ | \$0.98           |
| GL-816<br>GL-857-B       | $\begin{array}{c} 1.00\\ 160.00 \end{array}$ | $\frac{2}{2}$   | $2.5 \\ 5$ | 2.0<br>30 | $5000 \\ 22000$  | 10.0¶<br>0.125<br>5.0    | ET-T10<br>GET-745  |   | 5182028P2               | GL-898-A<br>GL-858<br>GL-893-A                                                                | .80              |
| GL-866-A/866<br>GL-869-B | 1.50<br>100.00                               | $\frac{2}{2}$   | $2.5 \\ 5$ | 5<br>18.0 | $10000 \\ 20000$ | $10.0 \P$<br>0.25<br>2.5 | ET-T103<br>GET-964 |   | 5182028P3               | GL-214<br>GL-846<br>GL-207                                                                    | 17               |
| GL-870-A                 | 600.00                                       | 2               | 5          | 65.0      | 15000¶<br>16000  | 5.0¶<br>75.0             | ET-T17             |   | 010202010               | GL-891<br>GL-892                                                                              |                  |
| GL-872-A/872             | 7.50                                         | 2               | 5          | 7.5       | 10000            | 1.25                     | ET-T12             |   | 5182028P8<br>5182028P10 | GL-889<br>GL-8002                                                                             | .35              |

## THYRATRONS—grid-controlled gaseous discharge tubes

|          | Users' | No. of | CATHODE |     |                    | PLATE       |            |                 | Temp Range             | Shipping        | Bulletin       |
|----------|--------|--------|---------|-----|--------------------|-------------|------------|-----------------|------------------------|-----------------|----------------|
| Type No. | Price  | trodes | Volts   | Amp | Peak Inv.<br>Volts | Peak<br>Amp | Avg<br>Amp | Grid<br>Voltage | Condensed<br>Mercury C | Weight<br>in Lb | No.            |
| GL-3C23  | \$9.00 | 3      | 2.5     | 7.0 | 1250               | 6.0         | 1.5        | Neg             | +40 - +80              | 3               | ET-T62         |
| FG-17    | 6.00   | 3      | 2.5     | 5.0 | 5000               | 2.0         | 0.5        | Neg             | -40 - +80              | 4               | <b>GET-428</b> |
| GL-502   | 1.50   | 4      | 6.3     | 0.6 | 1300               | 0.500       | 0.100      | Neg             | -40 - +80(1)           | 3               | GET-1079       |

## IGH-VACUUM RECTIFIERS

| Type      | Users'  | No. of | CATHODE |      | PLATE              |              |                 | Voltage       | Average Dissipa- |   |      | Bulletin       |
|-----------|---------|--------|---------|------|--------------------|--------------|-----------------|---------------|------------------|---|------|----------------|
| Ňo.       | Price   | trodes | Volts   | Amp. | Max. Inv.<br>Volts | Max.<br>Amp. | Average<br>Amp. | Drop<br>Volts | tion<br>Watts    | c |      | No.            |
| GL-217-C  | \$20.00 | 2      | 10      | 3.25 | 7500               | 0.600        |                 | 210           |                  |   | <br> | GET-762        |
| GL-836    | 11.50   | 2      | 2.5     | 5.0  | 5000               | 1.0          | 0.25            | 45            |                  |   | <br> | <b>GET-972</b> |
| GL-1616   | 5.75    | 2      | 2.5     | 5.0  | 5500               | 0.800        | 0.13            | 75            |                  |   | <br> | GET-976        |
| GL-1641   | 3.75    | 3      | 5.0     | 3.0  | 2120               | 0.250        |                 | 61            |                  |   | <br> | <b>GET-987</b> |
| GL-8013-A | 12.00   | 2      | 2.5     | 5.0  | 40000              | 0.150        | 0.020           |               |                  |   | <br> | <b>ET-T11</b>  |
| GL-8020   | 18.00   | 2      | 5.0     | 6.0  | 40000              | 0.750        | 0.100           | 200           |                  |   | <br> | <b>GET-988</b> |
|           |         |        | 5.8 🛆   |      | 12500 	riangle     |              |                 |               | $75 \triangle$   |   | <br> |                |

Figures in bold type are ICAS ratings.

\* Heater-type cathode.
\*\*\* Applies when a radiator in good condition is returned prepaid to Schenectady. \*\* Credit for return, prepaid, to Schenectady—carton \$5.00,

tube \$10.00. ‡ Single- or two-phase filament. Voltage is per unit.

§ Single-, three-, or six-phase filament. Voltage is per strand, current is per terminal.

†† Single- or three-phase filament. Voltage is per strand, cur-In Surge- of three-phase mancher. Voltage is per straid, current is per strai

**GASKETS FOR WATER-**

7/10

ROITAJIJ99A OIDAR

minitia Sinta

FM Police Radio

Carrier Current



# G-E

# Electronic tubes are at work today ...

in all types of government communications, FM, television, police radio, carrier current, standard broadcast and all kinds of special radio applications.

## also look to G-E for Descriptive Bulletin

Electronic Tubes for Industry......ETI-12 Electronic Receiving Tubes. MAQ-114 Vacuum Switches......ETX-1 Vacuum Capacitors......ETX-2



High-voltage Rectifier

Electronics Department GENERAL & ELECTRIC SCHENECTADY, N. Y.

FM Radio Broadcasting

Standard Radio Broadcasting

# G-E TRANSMITTING TUBES INTERCHANGEABILITY CHART

| Other                                                 | G-E                                                                   | Other                                             | G-E                                                                    | Other                                        | G-E                                                        | Other                                     | G-E                                                                  |
|-------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Types                                                 | Equivalent                                                            | Types                                             | Equivalent                                                             | Types                                        | Equivalent                                                 | Types                                     | Equivalent                                                           |
| BW-11<br>RK-11<br>RK-12<br>HV-18                      | GL-834<br>* GL-1623<br>* GL-809<br>* FP-252A                          | 211C<br>211D<br>217C<br>218<br>2185               | GL-835<br>FP-285<br>GL-217C<br>GL-218                                  | WE-357A<br>358-A<br>361A<br>369A<br>276 A    | * GL-833A<br>GL-858<br>* GL-835<br>GL-869B<br>GL-869B      | 857A<br>857B<br>858<br>860                | GL-857B<br>GL-857B<br>GL-858<br>GL-860<br>GL-860                     |
| TZ-20<br>TZ-20<br>RK-21<br>RK-23<br>RK-23A<br>HY-25   | * GL-1625<br>* GL-809<br>* GL-838<br>* GL-802<br>* GL-802<br>* GL-809 | 2185<br>219<br>241B<br>242-A-B-C<br>249B<br>250TH | * GL-218<br>GL-219<br>* GL-849<br>GL-242C<br>* GL-866A/866<br>* GL-806 | 384D<br>450T<br>450-TH<br>450-TL<br>WL -460  | * GL-845<br>* GL-833A<br>* GL-833A<br>* GL-833A<br>FP-252A | 862<br>863<br>865<br>866<br>866A          | GL-861<br>GL-862<br>* GL-892<br>GL-865<br>GL-866A/866<br>GL-866A/866 |
| RK-25<br>RK-25B<br>RK-28A<br>RK-28A<br>RK-30<br>RK-32 | GL-802<br>GL-802<br>GL-803<br>GL-800<br>* GL-834                      | 250TL<br>251A<br>254B<br>255B<br>258B             | GL-806<br>* GL-851<br>* GL-865<br>* GL-869B<br>* GL-866A/866           | WL-463<br>WL-469<br>WL-469<br>520B<br>WL-531 | * GL-806<br>* GL-211<br>FP-285<br>GL-520B<br>* GL-218      | 866A/866<br>866B<br>869A-B<br>870<br>870A | GL-866A/866<br>* GL-866A/866<br>GL-869B<br>GL-870<br>GL-870          |
| 35-T                                                  | * GL-812                                                              | 260A                                              | GL-860                                                                 | HK-654                                       | * GL-833A                                                  | 872                                       | GL-872                                                               |
| RK-36                                                 | * GL-806                                                              | 261A                                              | * GL-835                                                               | T-756                                        | * GL-1623                                                  | 872A                                      | GL-872A                                                              |
| RK-39                                                 | GL-807                                                                | 266B                                              | GL-866B                                                                | 800                                          | GL-800                                                     | 880                                       | GL-880                                                               |
| HY-40                                                 | * GL-802                                                              | 266C                                              | GL-857B                                                                | 801                                          | GL-801                                                     | WL-881                                    | * GL-869B                                                            |
| T-40                                                  | * GL-812                                                              | 267B                                              | * GL-872A                                                              | 801A                                         | GL-801                                                     | 889                                       | GL-889                                                               |
| HY-40Z                                                | * GL-809                                                              | 270A                                              | * GL-849                                                               | 802                                          | GL-802                                                     | 889R                                      | GL-889R                                                              |
| TZ-40                                                 | * GL-811                                                              | 276A                                              | GL-276A                                                                | 803                                          | GL-803                                                     | 891                                       | GL-891                                                               |
| RK-41                                                 | * GL-807                                                              | 279A                                              | * GL-851                                                               | 805                                          | GL-805                                                     | 891R                                      | GL-891R                                                              |
| RK-44                                                 | GL-837                                                                | 284D                                              | * GL-845                                                               | T-805                                        | GL-805                                                     | 892                                       | GL-892                                                               |
| RK-45                                                 | * GL-837                                                              | 295A                                              | GL-203A                                                                | 806                                          | GL-806                                                     | 892R                                      | GL-892R                                                              |
| RK-47                                                 | GL-814                                                                | 298A                                              | * GL-862                                                               | 807                                          | GL-807                                                     | 893                                       | GL-893                                                               |
| RK-48                                                 | * GL-813                                                              | 303A                                              | GL-203A                                                                | 809                                          | GL-809                                                     | 893R                                      | GL-893R                                                              |
| RK-49                                                 | * GL-807                                                              | 304A                                              | GL-204A                                                                | 810                                          | GL-810                                                     | 898                                       | GL-898                                                               |
| UH-50                                                 | * GL-837                                                              | 304B                                              | GL-834                                                                 | 811                                          | GL-811                                                     | 905                                       | GL-805                                                               |
| HY-51Z                                                | * GL-811                                                              | F-307A                                            | GL-207                                                                 | 812                                          | GL-812                                                     | 938                                       | GL-838                                                               |
| RK-52                                                 | * GL-811                                                              | 310                                               | * GL-801                                                               | 813                                          | GL-813                                                     | 941                                       | PT-841                                                               |
| RK-57                                                 | GL-805                                                                | 311                                               | GL-211                                                                 | 814                                          | GL-814                                                     | 945                                       | GL-845                                                               |
| RK-58                                                 | GL-838                                                                | 311CT                                             | GL-835                                                                 | 815                                          | GL-815                                                     | 949                                       | GL-849                                                               |
| RK-60                                                 | GL-1641                                                               | 311T                                              | GL-211                                                                 | T-825                                        | * GL-1623                                                  | 951                                       | GL-851                                                               |
| HY-61                                                 | * GL-807                                                              | 311T                                              | FP-285                                                                 | 829                                          | GL-829                                                     | 966                                       | GL-866A/866                                                          |
| RK-63                                                 | * GL-806                                                              | 317C                                              | GL-217C                                                                | 833                                          | GL-833A                                                    | 966A                                      | GL-866A/866                                                          |
| HY-69                                                 | * GL-807                                                              | 318A                                              | GL-218                                                                 | 833A                                         | GL-833A                                                    | 972                                       | GL-872                                                               |
| HF-100                                                | * GL-810                                                              | F-319A                                            | GL-219                                                                 | 834                                          | GL-834                                                     | 972A                                      | GL-872A                                                              |
| ZB-120                                                | * GL-838                                                              | WE-319A                                           | GL-872A                                                                | 835                                          | GL-835                                                     | 1613                                      | GL-1613                                                              |
| T-125                                                 | * GL-810                                                              | WE-322A                                           | GL-803                                                                 | 836                                          | GL-836                                                     | 1614                                      | GL-1614                                                              |
| TW-150                                                | * GL-806                                                              | 331A                                              | GL-805                                                                 | 837                                          | GL-837                                                     | 1616                                      | GL-1616                                                              |
| TW-150                                                | * GL-810                                                              | 332A                                              | * GL-803                                                               | 838                                          | GL-838                                                     | 1619                                      | GL-1619                                                              |
| HF-200                                                | FP-252A                                                               | 341AA                                             | GL-891R                                                                | 841                                          | PT-841                                                     | 1623                                      | GL-1623                                                              |
| HF-200                                                | * GL-810                                                              | 342B-C                                            | GL-242C                                                                | 843                                          | GL-843                                                     | 1625                                      | * GL-807                                                             |
| 203A                                                  | GL-203A                                                               | F-346A                                            | GL-846                                                                 | 845                                          | GL-845                                                     | 1627                                      | * GL-810                                                             |
| 203Z                                                  | * GL-838                                                              | 350A                                              | * GL-807                                                               | 846                                          | GL-846                                                     | 1628                                      | * GL-8012                                                            |
| 204A                                                  | GL-204A                                                               | F-353A                                            | GL-872A                                                                | 848                                          | * GL-891                                                   | 8002                                      | GL-8002                                                              |
| 207                                                   | GL-207                                                                | HK-354                                            | * GL-806                                                               | 849                                          | GL-849                                                     | 8002R                                     | GL-8002R                                                             |
| 211                                                   | GL-211                                                                | F-357A                                            | GL-857B                                                                | 851                                          | GL-851                                                     | 8012                                      | GL-8012                                                              |

\* Approximately equivalent; has similar ratings but is not completely interchangeable.

**FOR FURTHER INFORMATION** on G-E electronic tubes, ask for Bulletins GEA-3315C and GEA-3736 containing data and prices. For information on specific types, please ask for technical information sheets by tube type numbers. Any G-E tube distributor, or G-E sales office can supply this information. Or write direct to General Electric, Radio and Television Department, Schenectady, N. Y.

Supersedes issue dated Sept. 8, 1941.

www.SteamPoweredRadio.Com



# ELECTRONICS DEPARTMENT

## Vacuum Capacitors GL-1L21, GL-1L33, GL-1L36 and GL-1L38--Description and Rating

These vacuum capacitors are designed for circuits where the peak voltage is 7500 volts. Among the advantages of these capacitors is their small size which permits a more compact design than that of air capacitors.

### **Technical Information**

These data are for reference only. For design information see the specifications.

|         | Capacitance<br>± 5 Per Cent | Max Peak<br>Voltage | Ambient<br>Max | Temperature<br>Min |
|---------|-----------------------------|---------------------|----------------|--------------------|
| GL-1L21 | 12 µµf                      | 7.5 kv              | +65 C          | -40 C              |
| GL-1L33 | 100 µµf                     | 7.5 kv              | +65 C          | -40 C              |
| GL-1L36 | 25 µµ1                      | 7.5 kv              | +65 C          | -40 C              |
| GL-1L38 | 50 µµf                      | 7.5 kv              | +65 C          | -40 C              |



Outline Vacuum Capacitors GL-1L21, GL-1L36, and GL-1L38 K-5964469 11-23-43



Outline Vacuum Capacitor GL-1L33 K-5964459 11-23-43

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

4-44 (7M) Filing No. 8850

### www.SteamPoweredRadio.Com

Supersedes GET-914

# GENERAL DE ELECTRIC

## Vacuum Capacitors GL-1L22, GL-1L23 and GL-1L25

## Description and Rating

These vacuum capacitors are designed for circuits where the peak voltage is 16,000 volts. Among the advantages of these capacitors is their small size which permits a more compact design than that of air capacitors.

## **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

|         | Capacitance | Max Peak | Ambient | Temperature |
|---------|-------------|----------|---------|-------------|
|         | ±5%         | Voltage  | Max     | Min         |
| GL-1L22 | 25 μμf      | 16 kv    | +65 C   | -40 C       |
| GL-1L23 | 50 μμf      | 16 kv    | +65 C   | -40 C       |
| GL-1L25 | 12 μμf      | 16 kv    | +65 C   | -40 C       |



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 444 (7M) Filing No. 8850

## ELECTRONICS DEPARTMENT GENERAL B ELECTRIC Thyratron GL-3C23--Description and Rating

The GL-3C23 thyratron is designed for use in regulated-rectifier circuits. The use of a gas mixture of argon and mercury vapor provides constancy of characteristics within wide temperature limits. The construction, however, enables the tube to withstand higher voltages than many gas-filled types.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

| Electrica | 1 |
|-----------|---|
|-----------|---|

| Number of Electrodes<br>Cathode, Type                                                         |             | Coated-fi   | 3<br>lament       |                             |
|-----------------------------------------------------------------------------------------------|-------------|-------------|-------------------|-----------------------------|
| Voltage<br>Current, approx<br>Heating Time                                                    |             |             | 2.5<br>7.0<br>15  | Volts<br>Amperes<br>Seconds |
| Tube Peak Voltage Drop, approx                                                                |             |             | 15                | Volts                       |
| Approximate Control Characteristics<br>Anode Voltage<br>Grid Voltage                          | 100<br>-2.5 | 500<br>-4.5 | 25<br>0           | Volts<br>Volts              |
| Approximate Anode to Grid Capacitance<br>Deionization Time, approx<br>Ionization Time, approx |             |             | 1.8<br>1000<br>10 | uuf<br>Microsec<br>Microsec |

#### Mechanical

| Over-all Dimensions<br>Maximum Length<br>Maximum Diameter               |                       | 6 1/8 Inches<br>2 1/16 Inches            |
|-------------------------------------------------------------------------|-----------------------|------------------------------------------|
| Base<br>Cap<br>Net Weight, approx<br>Shipping Weight, approx            | Medium 4-Pin Bayonet, | M8-078<br>M8-128<br>3 Ounces<br>3 Pounds |
| MAXIMUM RATINGS                                                         |                       |                                          |
| Maximum Peak Anode Voltage<br>Inverse<br>Forward                        |                       | 1000 Volts<br>1000 Volts                 |
| Maximum Negative Grid Voltage<br>Before Conduction<br>During Conduction |                       | 500 Volts<br>10 Volts                    |

MAXIMUM RATINGS (CONT'D)

Maximum Anode Current Instantaneous 25 cycles and above Below 25 cycles

Average 210 to 400 cycles Below 210 cycles

Surge, for design only

Maximum Grid Current Instantaneous Average

Maximum Time of Averaging Current Temperature Limits, Condensed mercury

|     | 6.0    | Amperes |   |
|-----|--------|---------|---|
|     | 3.0    | Amperes |   |
|     |        |         |   |
|     | 1.0    | Ampere  |   |
|     | 1.5    | Ampere  |   |
|     | 55     | Amperes |   |
|     |        |         |   |
|     | 0.050  | Ampere  | - |
|     | 0.010  | Ampere  |   |
|     | 5      | Sec     |   |
| -40 | to +80 | C       |   |



Outline for Thyratron GL-3023 K-8639392 7-3-43

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. If You Didn't Get This From My Site, 4-44 (8M) Filing No. 8850 Then It Was Stolen From ... www.SteamPoweredRadio.Com

Supersedes GET-914

## ELECTRONICS DEPARTMENT

# GENERAL & ELECTRIC

## Transmitting Tube CL-146--Description and Rating

The GL-146 is a three-electrode tube designed for use as a zero-bias Class B amplifier. It may be used also as a Class C amplifier.

## TECHNICAL INFORMATION

#### GENERAL CHARACTERISTICS

| Electrical                            |                                       |           |
|---------------------------------------|---------------------------------------|-----------|
| Filament Voltage                      | 10                                    | Volts     |
| Filament Current                      | 3.25                                  | Amperes   |
| Amplification Factor, $I_{b} = 90$ ma | 75                                    |           |
| Grid-plate Transconductance           | 3900                                  | Micromhos |
| Direct Interelectrode Capacitances:   |                                       |           |
| Grid-plate                            | 8.4                                   | uuf       |
| Input                                 | 7.6                                   | uuf       |
| Output                                | 3.5                                   | uuf       |
|                                       | · · · · · · · · · · · · · · · · · · · |           |
| Mechanical                            |                                       |           |
| Base                                  | 4310                                  |           |
| Net Weight, approximate               | 14                                    | Ounces    |
| Shipping Weight, approximate          | 3                                     | Pounds    |
| Installation and operation            | GEH-980                               |           |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                         | Opera | tion  | Ratings |        |
|-----------------------------------------|-------|-------|---------|--------|
| CLASS B A-F POWER AMPLIFIER (TWO TUBES) |       |       |         |        |
| D-c Plate Voltage                       | 1000  | 1250  | 1500    | Volts  |
| Max Signal Plate Current, per tube      | 0.160 | 0.160 | 0.175   | Ampere |
| D-c Max Signal Plate Input, per tube    |       |       | 250     | Watts  |
| Plate Dissipation, per tube             |       |       | 125     | Watts  |
| D-c Grid Voltage                        | 0     | 0     |         | Volts  |
| Zero Signal Plate Current               | .02   | .034  |         | Ampere |
| Max Signal Plate Current                | 0.32  | 0.32  |         | Ampere |
| Max Signal Plate Input*                 | 320   | 400   |         | Watts  |
| Effect Load Resistance, plate-to-plate  | 7000  | 8400  |         | Ohms   |
| Max Signal Plate Power Output           | 200   | 250   |         | Watts  |
|                                         |       |       |         |        |

Typical

Maximum

CLASS B R-F POWER AMPLIFIER Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage  | 1000                                    | 1250    | 1500    | Volts                                     |
|--------------------|-----------------------------------------|---------|---------|-------------------------------------------|
| D-c Grid Voltage   | 0                                       | 0       | 0       | Volts                                     |
| D-c Plate Current  | 0.15                                    | 0.132   | 0.175   | Ampere                                    |
| Plate Input        |                                         |         | 200     | Watts                                     |
| Plate Dissipation  |                                         |         | 125     | Watts                                     |
| Plate Power Output | 45.                                     | 55      |         | Watts                                     |
|                    | - · · · · · · · · · · · · · · · · · · · |         |         |                                           |
|                    | T                                       | ypical  | Maximum | N. C. |
|                    | Ope                                     | eration | Ratings |                                           |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

|                               | 2000 | 1050  |        |
|-------------------------------|------|-------|--------|
| D-c Plate Voltage             | 1000 | 1250  | Volts  |
| D-c Grid Voltage              | -200 | -400  | Volts  |
| D-c Plate Current             | 0.16 | 0.175 | Ampere |
| D-c Grid Current, approximate | 0.04 | 0.06  | Ampere |
| Plate Input                   |      | 220   | Watts  |
| Plate Dissipation             |      | 80    | Watts  |
| Plate Power Output            | 100  |       | Watts  |
| www.SteamPoweredRadio.Com     |      |       |        |

|                                                 | Typical   | M    | laximum |
|-------------------------------------------------|-----------|------|---------|
|                                                 | Operation | F    | atings  |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR      |           |      |         |
| Key-down conditions per tube without modulation |           |      |         |
| D-c Plate Voltage 125                           | 0         | 1500 | Volts   |
| D-c Grid Voltage -15                            | 0         | -400 | Volts   |
| D-c Plate Current 0.1                           | .8        | 0.20 | Ampere  |
| D-c Grid Current, approximate 0.0               | 3         | 0.06 | Ampere  |
| Plate Input                                     |           | 300  | Watts   |
| Plate Dissipation                               |           | 125  | Watts   |
| Plate Power Output 15                           | 0         |      | Watts   |

\* Averaged over any audio-frequency cycle.

<sup>†</sup> Modulation, essentially negative, may be used if the positive peak of audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

GL-146 can be operated at maximum ratings in all classes of service at frequencies as high as 15 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL IN-FORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 60 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 15  | 30 | 60 | Mc       |
|--------------------------------------------------------------------------------------|-----|----|----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: |     |    |    |          |
| Class B telephony                                                                    | 100 | 85 | 69 | Per cent |
| Class C(telephony, plate-modulated (telegraphy                                       | 100 | 75 | 50 | Per cent |



GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 6-44 (7M) Filing No. 8850
Filing No. 8850

#### www.SteamPoweredRadio.Com

**ELECTRONICS DEPARTMENT** 

# GENERAL 🍘 ELECTRIC

## Transmitting Tube GL-152--Description and Rating

The GL-152 is a high-vacuum electronic tube for use as a Class B or C amplifier.

### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

| GENERAL CHARACTERISTICS                            |               |                  |
|----------------------------------------------------|---------------|------------------|
| Number of Electrodes                               | 3             |                  |
| Electrical                                         |               | *                |
|                                                    |               |                  |
| Cathode - Illamentary                              |               |                  |
| Voltage                                            | 10            | Volts            |
| Current                                            | 3.25          | Amperes          |
| Average Characteristics                            |               |                  |
| Amplification Factor                               | 25            |                  |
| Grid-plate Transconductance                        | 4000          | Micromhos        |
| Direct Interelectrode Capacitances                 |               |                  |
| Grid-plate                                         | 8.4           | Micromicrofarads |
| Grid-filament                                      | 7.5           | Micromicrofarads |
| Plate-filament                                     | 3.9           | Micromicrofarads |
| Frequency for Maximum Ratings                      | 15            | Megacycles       |
|                                                    |               |                  |
| Mechanical                                         |               |                  |
| Type of Cooling - Convection                       |               |                  |
| Maximum Ambient Temperature                        | 60            | С                |
| Net Weight, approximate                            | 14            | Ounces           |
| Installation and Operation -                       | GEH-980       |                  |
|                                                    |               |                  |
| MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS   |               |                  |
| CLASS B AUDIO-FREQUENCY POWER AMPLIFIER (Two Tubes | )             |                  |
|                                                    | Typical Max   | : imum           |
|                                                    | Operation Rat | ings             |
|                                                    |               |                  |

| D-c Plate Voltage                              | 1250 | 1500 | Volts        |
|------------------------------------------------|------|------|--------------|
| Maximum Signal D-c Plate Current, per tubet    |      | 175  | Milliamperes |
| D-c Max Signal Plate Input, per tubet          |      | 250  | Watts        |
| Plate Dissipation, per tubet                   |      | 125  | Watts        |
| D-c Grid Voltage                               | -40  |      | Volts        |
| Zero Signal D-c Plate Current                  | 16   |      | Milliamperes |
| Maximum Signal D-c Elate Current               | 320  |      | Milliamperes |
| Effective Load, plate-to-plate                 | 8400 |      | Ohms         |
| Maximum Signal Plate Power Output, approximate | 250  |      | Watts        |
|                                                |      |      |              |
| CLASS B RADIO-FREQUENCY POWER AMPLIFIER        |      |      |              |

Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0D-c Plate Voltage12501500VoltsD-c Grid Voltage-40VoltsD-c Plate Current132175Milliamperes

CLASS B RADIO-FREQUENCY POWER AMPLIFIER (CONT'D) Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0 (Cont'd)

|       |               |             | Typical<br>Operation | Maximur<br>Ratings | n<br>3 |
|-------|---------------|-------------|----------------------|--------------------|--------|
| Plate | Input         |             |                      | 200                | Watts  |
| Plate | Dissipation   |             |                      | 125                | Watts  |
| Plate | Power Output, | approximate | 55                   |                    | Watts  |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE-MODULATED Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0

| D-c Plate Voltage             |  | 1000 | 1250 | Volts        |
|-------------------------------|--|------|------|--------------|
| D-c Grid Voltage              |  | -200 | -400 | Volts        |
| D-c Plate Current             |  | 160  | 175  | Milliamperes |
| D-c Grid Current, approximate |  | 30   | 60   | Milliamperes |
| Plate Input                   |  |      | 220  | Watts        |
| Plate Dissipation             |  |      | 80   | Watts        |
| Plate Power Output            |  | 100  |      | Watts        |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR Key-down Conditions per Tube without Modulationt

| D-c Plate Voltage               | 1250 | 1500 | Volts        |
|---------------------------------|------|------|--------------|
| D-c Grid Voltage                | -150 | -400 | Volts        |
| D-c Plate Current               | 180  | 200  | Milliamperes |
| D-c Grid Current, approximate   | 30   | 60   | Milliamperes |
| Plate Input                     |      | 300  | Watts        |
| Plate Dissipation               |      | 125  | Watts        |
| Plate Power Output, approximate | 150  |      | Watts        |

The GL-152 can be operated at frequencies as high as 15 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 60 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                         | 15   | 30 | 60 | Megacycles |
|-----------------------------------|------|----|----|------------|
| PERCENTAGE OF MAXIMUM RATED PLATE |      |    |    |            |
| Class B                           | 100  | 85 | 69 | Per cent   |
| Class C Plate Modulated           | 100  | 75 | 50 | Per cent   |
| Class C Unmodulated               | -100 | 75 | 50 | Per cent   |

+ Averaged over any audio-frequency cycle

+ Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



Average Plate Characteristics for Transmitting Tube GL-152 K-6917441 10-17-39



Plate-grid Transfer Characteristics for Transmitting Tube GL-152 H-4997199 12-26-33



Outline Transmitting Tube GL-152 K-5182000 6-9-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 10-44 (7M) Filing No. 8850

### www.SteamPoweredRadio.Com

PRINTEC IN USA

# ELECTRONICS DEPARTMENT

## Transmitting Tube GL-159--Description and Rating

The GL-159 is a high-vacuum transmitting tube designed for use as a Class B and C amplifier.

## **Technical Information**

These data are for reference only. For design information see the specifications.

3

10 Volts

-80 Volts

6500 Micromhos

17.6 Micromicrofarad

15 Megacycles

1 Pound

3 Pounds

11 Micromicrofarad

5 Micromicrofarad

20

9.6 Amperes

GENERAL CHARACTERISTICS

Number of Electrodes

Electrical

Cathode - Filamentary Filament Voltage Filament Current Average Characteristics, Eb = 2000, Ib = 100 ma  $E_{f} = 10 v a-c$ 

Grid Voltage Amplification Factor Grid-plate Transconductance Direct Interelectrode Capacitances Grid-plate Input Output Frequency for Maximum Ratings

Mechanical

Type of Cooling - Convection Maximum Ambient Temperature 60 C

Net Weight, approximate Shipping Weight, approximate Installation and Operation - ET-H15

## MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B AUDIO-FREQUENCY POWER AMPLIFIER (Two Tubes)

|                                                                                                                | Typi<br>Opera                | cal<br>tion                   | Maximum<br>Ratings        |                                      |
|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------------------|--------------------------------------|
| D-c Plate Voltage<br>Max Signal D-c Plate Current, per tube ,<br>D-c Max Signal Plate Input, per tube †        | 1500                         | 2000                          | 2000<br>400<br>750<br>250 | Volts<br>Amperes<br>Watts            |
| D-c Grid Voltage<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current<br>Max Signal Plate Current       | -73<br>370<br>0.030<br>0.720 | -100<br>400<br>0.030<br>0.660 |                           | Volts<br>Volts<br>Amperes<br>Amperes |
| Max Driving Power, approximate<br>Effective Load, plate-to-plate<br>Max Signal Plate Power Output, approximate | 5<br>4400<br>720             | 4<br>6880<br>900              | ~                         | Watts<br>Ohms<br>Watts               |

#### CLASS B RADIO-FREQUENCY POWER AMPLIFIEK

Carrier Conditions Per Tube for Use With a Maximum Modulation Factor of 1.0

|                                     | Typi<br>Opera | cal   | Maximum<br><u>Ratings</u> |         |
|-------------------------------------|---------------|-------|---------------------------|---------|
| D-c Plate Voltage                   | 1500          | 2000  | 2000                      | Volts   |
| D-c Grid Voltage                    | -65           | -90   |                           | Volts   |
| D-c Plate Current                   | 0.240         | 0.190 | 0.300                     | Amperes |
| Plate Input                         |               |       | 400                       | Watts   |
| Plate Dissipation                   |               |       | 250                       | Watts   |
| Peak R-f Grid Input Voltage         | 200           | 200   |                           | Volts   |
| Driving Power Output, § approximate | 3.5           | 2.5   |                           | Watts   |
| Plate Power Output, approximate     | 120           | 130   |                           | Watts   |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR- PLATE-MODULATED Carrier Conditions Per Tube for Use With a Maximum Modulation Factor of 1.0

|                                       |              | Typical<br>Operation | <u>1</u>     | Maximum<br>Ratings       |
|---------------------------------------|--------------|----------------------|--------------|--------------------------|
| D-c Plate Voltage<br>D-c Grid Voltage | 1250<br>-200 | 1500<br>-240         | 1500<br>-240 | 1500 Volts<br>-400 Volts |
| D-c Plate Current                     | 0.360        | 0.360                | 0.400        | 0.400 Amperes            |
| Plate Input<br>Plate Dissipation      |              |                      |              | 150 Watts                |
| Peak R-f Grid Input Voltage           | 350          | 390                  | 400          | Volts                    |
| Driving Fower                         | 7            | 7                    | 9            | Watts                    |
| Flate Power Output                    | 330          | 400                  | 450          | Watts                    |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR ‡Key Down Conditions Per Tube Without Modulation

|                                          | .*    | Typical<br>Operation | <u>1</u> | Maximum<br>Rat <b>i</b> ngs |         |
|------------------------------------------|-------|----------------------|----------|-----------------------------|---------|
| D-c Plate Voltage                        | 1500  | 2000                 | 2000     | 2000                        | Volts   |
| D-c Grid Voltage                         | -150  | -200                 | -200     | -400                        | Volts   |
| D-c Plate Current                        | 0.360 | 0.360                | 0.400    | 0.400                       | Amperes |
| D-c Grid Current, approximate            | 0.014 | 0.014                | 0.017    | 0.100                       | Amperes |
| Plate Input                              |       |                      |          | 800                         | Watts   |
| Plate Dissipation                        |       |                      |          | 250                         | Watts   |
| Peak R-f Grid Input Voltage, approximate | 295   | 340                  | 350      |                             | Volts   |
| Driving Power, approximate               | 4     | 5                    | 6        |                             | Watts   |
| Plate Power Output, approximate          | 400   | 560                  | 620      |                             | Watts   |
|                                          |       |                      |          |                             |         |

+ Modulation, essentially negative, may be used if the positive peak of the Audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

§ At crest of audio-frequency cycle.

+ Averaged over any audio-frequency cycle.

The GL-159 can be operated at frequencies as high as 15 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 35 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                         | 15  | 25 | 35 | Megacycles |
|-----------------------------------|-----|----|----|------------|
| PERCENTAGE OF MAXIMUM RATED PLATE |     |    |    |            |
| Class B                           | 100 | 85 | 74 | Per cent   |
| Class C Plate Modulated           | 100 | 75 | 50 | Per cent   |
| Class C Unmodulated               | 100 | 75 | 50 | Per cent   |



Average Plate Characteristics for GL-159 H-5178580 1-31-36



**K-6917438** 

11-3-39



K-5302943 7-23-35

**ELECTRONICS DEPARTMENT** 

GENERAL 🍘 ELECTRIC

## Transmitting Tube GL-169--Description and Rating

The GL-169 is designed for use as a Class B or C amplifier.

## **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications. GENERAL CHARACTERISTICS 3 Number of Electrodes Electrical Cathode - Filamentary 10 Volts Voltage 9.6 Amperes Current Average Characteristics, Eb = 2000, Ib = 100 ma  $E_f = 10 a - c$ -4 Volts Grid Voltage 85 Amplification Factor 7500 Micromhos Grid-plate Transconductance,  $I_{\rm b}$  = 100 ma Direct Interelectrode Capacitances 19 µµf Grid-plate 11.5 HHf Grid-filament 4.7 Muf Plate-filament 15 Megacycles Frequency for Maximum Ratings Mechanical

Type of Cooling - Convection Maximum Ambient Temperature 60 C Net Weight, approximate Shipping Weight, approximate Installation and Operation - ET-H15

l Pound 3 Pounds

> Pound

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B AUDIO-FREQUENCY POWER AMPLIFIER (TWO TUBES)

|                                                          | Typ:<br>Opera | ical<br>ation | Maximum<br>Ratings |                  |
|----------------------------------------------------------|---------------|---------------|--------------------|------------------|
| D-c Plate Voltage<br>Max Signal Plate Current, per tube† | 1500          | 2000          | 2000               | Volts<br>Amperes |
| D-c Max Signal Plate Input, per tubet                    |               |               | 750                | Watts            |
| Plate Dissipation, per tubet                             |               |               | 250                | Watts            |
| A-c Grid Voltage                                         | -12           | -18           |                    | Volts            |
| Peak A-f Grid Input Voltage                              | 220           | 220           |                    | Volts            |
| Zero Signal Plate Current                                | 0.030         | 0.030         |                    | Amperes          |
| Max Signal Plate Current                                 | 0.720         | 0.660         |                    | Amperes          |
| Max Signal Driving Power, approximate                    | 8-            | 6             |                    | Watts            |
| Effective Load, plate-to-plate                           | 4600          | 7000          |                    | Ohms             |
| Max Signal Plate Power Output, approximate               | 720           | 900           |                    | Watts            |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

## CLASS B RADIO-FREQUENCY POWER AMPLIFIER

Carrier conditions per tube for use with a maximum modulation factor of 1.0

|                                 | Typical<br>Operation |       | Maximum<br>Ratings |  |
|---------------------------------|----------------------|-------|--------------------|--|
| D-c Plate Voltage               | 1500                 | 2000  | 2000 Volts         |  |
| A-c Grid Voltage                | -5                   | -10   | Volts              |  |
| D-c Plate Current               | 0.240                | 0.190 | 0.300 Amperes      |  |
| Plate Input                     |                      |       | 400 Watts          |  |
| Plate Dissipation               |                      |       | 250 Watts          |  |
| Peak R-f Grid Input Voltage     | 110                  | 110   | Volts              |  |
| Driving Power§, approximate     | 5                    | 3.5   | Watts              |  |
| Plate Power Output, approximate | 120                  | 130   | Watts              |  |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE-MODULATED Carrier conditions per tube for use with a maximum modulation factor of 1.0

|                               | 1     | Typical |       | Maximun | n       |
|-------------------------------|-------|---------|-------|---------|---------|
|                               | 0     | peratio | n     | Ratings | 3       |
| D-c Plate Voltage             | 1250  | 1500    | 1500  | 1500    | Volts   |
| D-c Grid Voltage              | -80   | -100    | -100  | -400    | Volts   |
| D-c Plate Current             | 0.360 | 0.360   | 0.400 | 0.400   | Amperes |
| D-c Grid Current, approximate | 0.045 | 0.040   | 0.045 | 0.100   | Amperes |
| Plate Input                   |       |         |       | 600     | Watts   |
| Plate Dissipation             | ×.    |         |       | 150     | Watts   |
| Peak R-f Grid Input Voltage   | 210   | 230     | 240   |         | Volts   |
| Driving Power                 | 9     | 8.5     | 10    |         | Watts   |
| Plate Power Output            | 330   | 400     | 450   |         | Watts   |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation#

|                                          |       | Typical |       | Maximum       |
|------------------------------------------|-------|---------|-------|---------------|
|                                          | 0     | peratio | n     | Ratings       |
| D-c Plate Voltage                        | 1500  | 2000    | 2000  | 2000 Volts    |
| D-c Grid Voltage                         | -50   | -100    | -100  | -400 Volts    |
| D-c Plate Current                        | 0.360 | 0.360   | 0.400 | 0.400 Amperes |
| D-c Grid Current, approximate            | 0.038 | 0.037   | 0.042 | 0.100 Amperes |
| Plate Input                              |       |         |       | 800 Watts     |
| Plate Dissipation                        |       |         |       | 250 Watts     |
| Peak R-f Grid Input Voltage, approximate | 170   | 230     | 240   | Volts         |
| Driving Power, approximate               | 6     | 8       | 10    | Watts         |
| Plate Power Output, approximate          | 400   | 560     | 620   | Watts         |

t Averaged over any audio-frequency cycle

§ At crest of audio-frequency cycle

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

The GL-169 can be operated at frequencies as high as 15 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 35 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                        |    | 15  | 25 | 35 | Megacycles |
|----------------------------------|----|-----|----|----|------------|
| PERCENTAGE OF MAXIMUM RATED PLA' | TE |     |    |    |            |
| Class B                          |    | 100 | 85 | 74 | Per cent   |
| Class C Plate Modulated          |    | 100 | 75 | 50 | Per cent   |
| Class C Unmodulated              |    | 100 | 75 | 50 | Per cent   |







Average Plate-grid Characteristics for Transmitting Tube GL-169 K-6917442 4-16-40



Average Plate Characteristics of Transmitting Tube GL-169 K-6917439 11-3-39

## GENERAL 🌮 ELECTRIC

## **Transmitting Tube GL-203-A - - Description and Rating**

The transmitting tube GL-203A is a three-electrode tube designed for use as a Class B and C power amplifier.

### **Technical Information**

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Typical

Max

These data are for reference only. For design information see the specifications.

### GENERAL CHARACTERISTICS:

| Filament Voltage, volts                | 10   |
|----------------------------------------|------|
| Filament Current, amperes              | 3.25 |
| Amplification Factor Ib = 72 ma        | 25   |
| Grid-Plate Transconductance, mmhos     | 4200 |
| Direct Interelectrode Capacitances, uu | f    |
| Grid-plate                             | 14.5 |
| Input                                  | 6.5  |
| Output                                 | 5.5  |
| Base or Terminal Description           |      |
| Jumbo, 4-Large                         | Pin  |
| Net Weight, oz approx                  | 7.5  |
| Shipping Weight, 1b approx             | 7    |
| Installation and Operation             |      |
| Instructions GEH                       | -980 |



Outline Transmitting Tube GL-203-A K-4909036 9-20-39

\* Averaged over an audio-frequency cycle

|                                                   | Operatio | n    | Rat-<br>ings |
|---------------------------------------------------|----------|------|--------------|
| CLASS B A-F POWER AMPLIF                          | IER (TWO | TUBE | s):          |
| D-c Plate Voltage, v<br>Maximum Signal Plate      | 1000     | 1250 | 1250         |
| Current (per tube)*,<br>amp<br>D-c Maximum Signal | ;        |      | .175         |
| Plate Input (per<br>tube)*, w                     |          |      | 220          |
| Plate Dissipation*                                |          |      | 100          |
| D-c Grid Voltage, v                               | -30      | -40  |              |
| Zero Signal Plate<br>Current, ma                  | 26       | 26   |              |
| Maximum Signal Plate<br>Current, ma               | 320      | 320  |              |



Average Grid Characteristics of Transmitting Tube GL-203-A K-6917428 10-3-39

| Operation ing                                                                                                                                        | 3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Mavimum Signal Driving                                                                                                                               |   |
| Power, approx w 10 11                                                                                                                                |   |
| to plate), ohms 6900 9000                                                                                                                            |   |
| Power Output, w 200 260                                                                                                                              |   |
| CLASS B R-F POWER AMPLIFIER:<br>(Carrier conditions per tube for use with<br>a maximum modulation factor of 1.0)                                     |   |
| D-c Plate Voltage, v 1000 1250 1250                                                                                                                  |   |
| D-c Grid Voltage, v -30 -40                                                                                                                          |   |
| D-c Plate Current, amo .130 .106 .150                                                                                                                |   |
| Plate Input. w 150                                                                                                                                   |   |
| Plate Dissipation. W 100                                                                                                                             |   |
| Peak E f Grid Input                                                                                                                                  |   |
| Voltages, v 95 90                                                                                                                                    |   |
| D-c Grid Current,                                                                                                                                    |   |
| approx ma 5 5                                                                                                                                        |   |
| Driving Power T,                                                                                                                                     |   |
| approx W 5 3                                                                                                                                         |   |
| Plate Power Output, w 40 42.5                                                                                                                        |   |
| CLASS C R-F POWER AMPLIFIER AND<br>OSCILLATOR - PLATE MODULATED:<br>(Carrier conditions per tube for use with<br>a maximum modulation factor of 1.0) |   |
| D-c Plate Voltage, v 750 1000 1000                                                                                                                   |   |
| D-c Grid Voltage, v -100 -135 -400                                                                                                                   |   |
| D-c Plate Current, amp .150 .150 .175<br>D-c Grid Current,                                                                                           |   |
| approx amp .050 .050 .060                                                                                                                            |   |
| Plate Input, w 175                                                                                                                                   |   |
| Plate Dissipation, w 67<br>Peak E-f Grid Input                                                                                                       |   |
| Voltage approx W 235 275                                                                                                                             |   |
| Driving Power approx W 12 14                                                                                                                         |   |
| Plate Power Output 65 100                                                                                                                            |   |
| CLASS C R-F POWER AMPLIFIER AND                                                                                                                      |   |
| OSCILLATOR:<br>(Key down conditions per tube without<br>modulation)‡                                                                                 |   |
| D-c Plate Voltage, v 750 1000 1250 1250                                                                                                              |   |
| D-c Grid Voltage, v -75 -100 -125 -400                                                                                                               |   |
| D-c Plate Current, amp .150 .150 .150 .175<br>D-c Grid Current.                                                                                      |   |
| approx amp .025 .025 .025 .060                                                                                                                       |   |
| Plate Input. W 220                                                                                                                                   |   |
|                                                                                                                                                      |   |

Rat-Typical Operation ings Peak R-f Grid Input Voltage, approx v 195 225 255 -----Driving Power, approx w 5 6 7 Plate Power Output, w 65 100 130 - -1.2 0.8 07 0.6 0.5 0. 0.3 0.2

Max

Average Plate Characteristics of Transmitting Tube GL-203-A K-5917424. 10-3-39

Plate voltage in volts

The normal value of grid leak, when the tube is used as an oscillator or r-f power amplifier (Class C), is in the neighborhood of 5000 ohms, although this may be replaced by a suitable fixed bias. If self-bias is used the cathode resistor should be approximately 600 ohms.

The maximum ratings apply only at frequencies below 15 megacycles. For operation at higher frequencies adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| Frequency, Megacycles   | 15  | 30 | 80  |
|-------------------------|-----|----|-----|
| Percentage of Maximum ) |     |    | - 0 |
| Rated Plate Voltage )   | 100 | 15 | 50  |
| and Plate Input )       |     |    |     |

The resonant frequency of the gridplate circuit is approximately 100 megacycles.

† At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

0.

## GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

10-41 (3M) Filing No. 8850

Supersedes GET-501C

## GENERAL 🍘 ELECTRIC

## Transmitting Tube GL-204-A—Description and Rating

TECHNICAL INFORMATION

The GL-204-A is a three-electrode vacuum tube designed for use as a Class B and C amplifier.

These data are for reference only. For design information, see the specifications.

CHARACTERISTICS AND RATINGS

| 11<br>3.85<br>23 | Volts<br>Amperes                                                        |
|------------------|-------------------------------------------------------------------------|
| 4000             | Micromhos                                                               |
|                  |                                                                         |
| 15               | μµſ                                                                     |
| 12.5             | UUI                                                                     |
| 2.3              | μμf                                                                     |
| 3502             | 11                                                                      |
| <br>3<br>3       | Megacycles<br>Pounds                                                    |
|                  | 11<br>3.85<br>23<br>4000<br>15<br>12.5<br>2.3<br>3502<br>3<br>3502<br>3 |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES)

| D-c Plate Voltage<br>Maximum Signal Plate Current                                                                                                                                              | 2000                   | 2500                          | 3000                          | 3000                          | max               | Volts                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------|--------------------------------------------|
| (per tube)*                                                                                                                                                                                    |                        |                               |                               | 0.275                         | max               | Ampere                                     |
| D-c Maximum Signal Plate Input<br>(per tube)*<br>Plate Dissipation (per tube)*<br>D-c Grid Voltage<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current<br>Maximum Signal Plate Current | -60<br>500<br>0.080    | -80<br>500<br>0.080           | -100<br>500<br>0.080          | 650<br>250                    | mex<br>mex        | Watts<br>Watts<br>Volts<br>Volts<br>Ampere |
| Maximum Signal Flate Input*                                                                                                                                                                    | 1000                   | 1050                          | 1100                          |                               |                   | Watts                                      |
| Maximum Signal Driving Power<br>(approx)<br>Effective Load (plate-to-plate)<br>Maximum Signal Plate Power Output                                                                               | 20<br>8800<br>600      | 18<br>13600<br>650            | 18<br>20000<br>700            |                               |                   | Watts<br>Ohms<br><b>W</b> atts             |
| CLASS B R-F POWER AMPLIFIER<br>Carrier conditions per tube for us                                                                                                                              | se with a              | maximum                       | modulati                      | on facto                      | or of             | 1.0                                        |
| D-c Plate Voltage<br>D-c Grid Voltage                                                                                                                                                          |                        | 1500<br>-50                   | 2000<br>-70                   | 2500                          | max ~             | Volts<br>Volts                             |
| D-c Plate Current<br>Plate Input                                                                                                                                                               |                        | 0.2                           | 0.16                          | 0.225<br>400                  | max<br>max        | Ampere<br>Watts                            |
| Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power (approx)**<br>Plate Power Output                                                                                             |                        | 170<br>18<br>80               | 165<br>15<br>100              | 250                           | max               | Watts<br>Volts<br>Watts<br>Watts           |
| CLASS C R-F POWER AMPLIFIER AND OS<br>Carrier conditions per tube for us                                                                                                                       | SCILLATOR<br>se with a | - PLATE<br>maximum            | MODULATE                      | D<br>on facto                 | or of             | 1.0                                        |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)                                                                                                        |                        | 1500<br>-200<br>0.25<br>0.035 | 2000<br>-250<br>0.25<br>0.035 | 2000<br>-500<br>0.275<br>0.08 | max<br>max<br>max | Volts<br>Volts<br>Ampere                   |

550 max

167 max

Watts

Watts

If You Didn't Get This From My Site, Then It Was Stolen From...

Plate Input

www.SteamPoweredRadio.Com

Plate Dissipation

| Peak R-f Grid Input Voltage (approx  | ()      | 450     | 500  |         |    | Volts  |
|--------------------------------------|---------|---------|------|---------|----|--------|
| Driving Power (approx)               |         | 20      | 20   |         |    | Watts  |
| Plate Power Output                   |         | 225     | 350  |         |    | Watts  |
| CLASS C R-F POWER AMPLIFIER AND OSC  | ILLATO  | R       |      |         |    |        |
| Key-down conditions per tube without | it modu | lation† |      |         |    |        |
| D-c Plate Voltage                    | 1500    | 2000    | 2500 | 2500 m  | ax | Volts  |
| D-c Grid Voltage                     | -150    | -175    | -200 | -500 m  | ax | Volts  |
| D-c Plate Current                    | 0.25    | 0.25    | 0.25 | 0.275 m | ax | Ampere |
| D-c Grid Current (approx)            | 0.03    | 0.03    | 0.03 | 0.08 m  | ax | Ampere |
| Plate Input                          |         |         |      | 690 m   | ax | Watts  |
| Plate Dissipation                    |         |         |      | 250 m   | ax | Watts  |
| Peak R-f Grid Input Voltage(approx)  | 400     | 425     | 440  |         |    | Volts  |
| Driving Power (approx)               | 15      | 15      | 15   |         |    | Watts  |
| Plate Power Output                   | 240     | 350     | 450  |         |    | Watts  |
|                                      |         |         |      |         |    |        |

\* Averaged over any audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

+ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-204-A can be operated at maximum ratings in all classes of service at frequencies as high as 3 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 30 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                       | 10              | 30      | Mc                                                                 |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|---------|--------------------------------------------------------------------|
| MAXIMUM PERMISSIBLE PERCI<br>MAXIMUM RATED PLATE VOLTA<br>PLATE INPUT: | ENTAGE OF<br>AGE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                 |         |                                                                    |
| Class B Telephony                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                     | 84              | 69      | Per Cent                                                           |
| Class C (Telephony, pla<br>(Telegraphy                                 | ate-modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     | 75              | 50      | Per Cent                                                           |
| 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10               | 0.5<br>9 0.4<br>9 0.4<br>10 0<br>10 0<br>10<br>10 0<br>10 0<br>1 | l600 2000<br>voltage    | Eg=+25          | Base No | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Average Plate Charac-<br>teristics for Trans-                          | Average Grid-p<br>tics for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | late Chara<br>Transmitt | acteris-<br>ing | Base No | 1904 - 13+24 0D+<br>16R                                            |
| mitting Tube GL-204-A                                                  | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GL-204-A                |                 |         | 0.80 00 + + + 00 08.0                                              |
|                                                                        | K-7000101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 6-3-35          |         |                                                                    |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                 | Outlin  | ne Transmit-                                                       |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                 | ting !  | Tube GL-204-A                                                      |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                 | K-210   | 9055 12-13-39                                                      |

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

10-43 (5M) Filing No. 8850

www.SteamPoweredRadio.Com

## **ELECTRONICS DEPARTMENT**

## GENERAL 🛞 ELECTRIC

## Transmitting Tube GL-207--Description and Rating

#### **Technical Information**

The GL-207 is a three-electrode, water-cooled vacuum tube designed for use as a radio-frequency power amplifier, oscillator, or Class B modulator.

These data for reference only. For equipment design see specifications.

GENERAL CHARACTERISTICS

#### Electrical

| Filament - Tungsten                                                  |          |             |
|----------------------------------------------------------------------|----------|-------------|
| Voltage                                                              | 22       | Volts       |
| Current                                                              | 51       | Amperes     |
| Average Characteristics, $E_b = 10,000$ , $I_b = 750$ ma, $E_f = 22$ |          |             |
| Grid Voltage                                                         | -310     | Volts       |
| Amplification Factor                                                 | 20       |             |
| Grid-plate Transconductance, I <sub>D</sub> = 750 ma                 | 5700     | Micromhos   |
| Direct Interelectrode Capacitances                                   |          |             |
| Grid-plate                                                           | 27       | uuf         |
| Input                                                                | 18       | uuf         |
| Output                                                               | 2.5      | üuf         |
| Frequency for Maximum Ratings                                        | 1.6      | Megacycles  |
| Mechanical                                                           |          |             |
| Type of Cooling - Water                                              |          |             |
| Water flow                                                           | 3 - 8    | Gpm         |
| Maximum outlet Temperature                                           | 70       | C           |
| Base Description                                                     | 3906     |             |
| Gasket                                                               | Cat. No. | . 5182028P3 |
| Maximum Over-all Dimensions                                          |          |             |
| Length                                                               | 20 1/4   | Inches      |

Net Weight, approximate Shipping Weight, approximate Installation and Operation

Radius

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B AUDIO-FREQUENCY POWER AMPLIFIER, TWO TUBES

|                                           | Typical Operation |       |       | Maximum Ratings |
|-------------------------------------------|-------------------|-------|-------|-----------------|
| D-c Plate Voltage                         | 6000              | 10000 | 12500 | 15000 Volts     |
| Maximum Signal Plate Current, per tubet   |                   |       |       | 2.0 Amperes     |
| D-c Maximum Signal Plate Input, per tubet |                   |       |       | 20 Kilowatts    |
| Plate Dissipation, per tubet              |                   |       |       | 7.5 Kilowatts   |
| D-c Grid Voltage                          | -210              | -410  | -575  | Volts           |
| Peak A-F Grid Input Voltage               | 1520              | 2140  | 2300  | Volts           |
| Zero Signal Plate Current                 | 0.5               | 0.5   | 0.4   | Ampere          |
| Maximum Signal Plate Current              | 2.5               | 3.2   | 2.8   | Amperes         |
| Maximum Signal Driving Power, approx      | 190               | 380   | 400   | Watts           |
| Effective Load, Plate-to-plate            | 4200              | 6400  | 10000 | Ohms            |
| Maximum Signal Plate Power Output         | 8                 | 20    | 22.5  | Kilowatts       |
|                                           |                   |       |       |                 |

\*Averaged over any audio-frequency cycle

CLASS B RADIO-FREQUENCY POWER AMPLIFIER Carrier conditions per tube for use with a maximum modulation factor of 1.0

| D-c Plate Voltage | 6000 | 10000 | 14000 | 15000 Volts |
|-------------------|------|-------|-------|-------------|
| D-c Grid Voltage  | -225 | -440  | -650  | Volts       |
| D-c Plate Current | 0.62 | 0.93  | 1.0   | 1.0 Ampere  |

6 1/2 Inches

GEH-1152

3 Pounds

10 Pounds

|                                  | Typic | al Opera | ation | Maximum Ratings              |
|----------------------------------|-------|----------|-------|------------------------------|
| Plate Input<br>Plate Dissipation |       |          |       | 15 Kilowatts<br>10 Kilowatts |
| Peak R-f Grid Input Voltage      | 800   | 1200     | 1460  | Volts                        |
| Driving Power‡, approx           | 72    | 16       | 0     | Watts                        |
| Plate Power Output               | 1     | 2.5      | 4     | Kilowatts                    |

Maximum Ratings

#At crest of audio-frequency cycle.

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED Carrier conditions per tube for use with a maximum modulation factor of 1.0

| D-c Plate Voltage                   | 6000  | 8000  | 10000 | 10000 Volts   |
|-------------------------------------|-------|-------|-------|---------------|
| D-c Grid Voltage                    | -1200 | -1600 | -2000 | -3000 Volts   |
| D-c Plate Current                   | 0.76  | 0.78  | 0.75  | 1.0 Ampere    |
| D-c Grid Current, approx            | 0.15  | 0.14  | 0.07  | 0.20 Ampere   |
| Plate Input                         |       |       |       | 10 Kilowatts  |
| Plate Dissipation                   |       |       |       | 6.6 Kilowatts |
| Peak R-f Grid Input Voltage, approx | 1860  | 2300  | 2660  | Volts         |
| Driving Power, approx               | 280   | 325   | 185   | Watts         |
| Plate Power Output                  | 3.5   | 5     | 6     | Kilowatts     |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation\*

| D-c Plate Voltage           | 8000  | 10000 | 12000 | 15000 | Volts     |
|-----------------------------|-------|-------|-------|-------|-----------|
| D-c Grid Voltage            | -1000 | -1200 | -1600 | -3000 | Volts     |
| D-c Plate Current           | 1.1   | 1.33  | 1.67  | 2.0   | Amperes   |
| D-c Grid Current, approx    | 0.17  | 0.12  | 0.09  | 0.2   | Ampere    |
| Plate Input                 |       |       |       | 30    | Kilowatts |
| Plate Dissipation           |       |       |       | 10    | Kilowatts |
| Peak R-f Grid Input Voltage | 1730  | 2050  | 2650  |       | Volts     |
| Driving Power, approx       | 295   | 245   | 235   |       | Watts     |
| Plate Power Output          | 6.5   | 10    | 15    |       | Kilowatts |
|                             |       |       |       |       |           |

\*Modulation, essentially negative, may be used if the positive peak of the Audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

The GL-207 can be operated at frequencies as high as 1.5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 20 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                   | 1.5    | 7.5        | 20      | Mega    | acycles  |       |
|-----------------------------------------------------------------------------|--------|------------|---------|---------|----------|-------|
| PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE                                   |        |            |         |         |          |       |
| Class B                                                                     | 100    | 85         | 76      | Per     | Cent     |       |
| Class C Plate Modulated                                                     | 100    | 75         | 50      | Per     | Cent     |       |
| Class C Unmodulated                                                         | 100    | 75         | 50      | Per     | Cent     |       |
| APPLICATION NOTES                                                           |        |            |         |         |          |       |
| Plate Series Protective Resistors (see par stallation in the Instructions). | agraph | n describi | ng plat | e circu | it under | r In- |
| Series Resistor, ohms 2                                                     | 25     | 50 20      | 0 2     | 250     | 275      | 300   |
| Maximum Power Output of<br>Rectifier, kilowatts                             | .6     | 40 10      | 0 2     | 50      | 640      | 1600  |



Average Plate Characteristic for Transmitting Tube GL-207 K-6966463 6-12-42



Characteristics for Transmitting Tube GL-207 K-6966464 6-12-42



Outline Transmitting Tube GL-207 K-5182095 5-12-39





GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

Supersedes GET-763A



## **Transmitting Tube GL-211 -- Description and Rating**

The GL-211 is a general-purpose three-electrode transmitting tube which may be used as a Class A, B, or C amplifier. This tube can be operated at maximum ratings at frequencies as high as 15 megacycles.

TECHNICAL INFORMATION

| ELECTRICAL                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filament Voltage                             | 10      | volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filament Current                             | 3.25    | amperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Amplification Factor                         | 12      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Grid-plate Transconductance, $I_{b} = 60$ ma | 3600    | micromhos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Direct Interelectrode Capacitances           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Grid-plate                                   | 14.5    | µµſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Input                                        | 6       | μμſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Output                                       | 5.5     | ццf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MECHANICAL                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Base Description                             | Jumbo   | 4 - Large Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Net Weight, approx                           | 8       | ounces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Shipping Weight, approx                      | 4       | pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Installation and Operation                   | GEH-980 | <b>2</b> 3 "100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (100" (10)" (100" (100" (100" (100" (100" (10)" (100" (10)" (100" (10)" ( |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS A A-F AMPLIFIER AND MODULATOR

| Filament Voltage                         |        | l      | 0      |         |        | volts        |
|------------------------------------------|--------|--------|--------|---------|--------|--------------|
| D-c Plate Voltage                        | 750    | 1000   | 1250   | 1250    | max    | volts        |
| Plate Dissipation                        |        |        |        | 75      | max    | watts        |
| D-c Grid Voltage                         | -46    | -61    | -75    |         |        | volts        |
| Peak Grid Swing, approx                  | 41     | - 56   | 75     |         |        | volts        |
| D-c Plate Current                        | 34     | 53     | 60     |         |        | milliamperes |
| Plate Resistance                         | 4400   | 3800   | 3600   |         |        | ohms         |
| Load Resistance                          | 8800   | 7600   | 9200   |         |        | ohms         |
| Plate Power Output, 5% second harmonic   | 5.6    | 12     | 19.7   |         |        | watts        |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)  |        |        |        |         |        |              |
| Filament Voltage                         |        | 1      | 0      |         |        | volts        |
| D-c Plate Voltage                        |        | 1000   | 1250   | 1250    | max    | volts        |
| Max Signal Plate Current, per tube§      |        |        | -      | 0.175   | max    | amperes      |
| D-c Max Signal Plate Input, per tube§    |        |        |        | 220     | max    | watts        |
| Plate Dissipation, per tube§             |        |        |        | 100     | max    | watts        |
| D-c Grid Voltage                         |        | -72    | -95    |         |        | volts        |
| Peak A-f Grid Input Voltage              |        | 380    | 410    |         |        | volts        |
| Zero Signal Plate Current                |        | 20     | 20     |         |        | milliamperes |
| Max Signal Plate Current                 |        | 320    | 320    |         |        | milliamperes |
| Max Signal Driving Power, approx         |        | 7.5    | 8      |         |        | watts        |
| Effective Load, plate-to-plate           |        | 6900   | 9000   |         |        | ohms         |
| Max Signal Plate Power Output            |        | 200    | 260    |         |        | watts        |
| CLASS B R-F POWER AMPLIFIER              |        |        |        |         |        |              |
| Carrier conditions per tube for use with | a maxi | mum mo | dulati | on fact | cor of | 1.0          |
| Filament Voltage                         |        | 1      | 0      |         |        | volts        |
| D-c Plate Voltage                        |        | 1000   | 1250   | 1250    | max    | volts        |
| D-c Grid Voltage                         |        | -72    | -95    |         |        | volts        |
| D-c Plate Current                        |        | 0.130  | 0.106  | 0.150   | max    | amperes      |

150 max watts

www.SteamPoweredRadio.Com

Plate Input

| Plate Dissipation<br>Peak R-f Grid Input Voltage<br>D-c Grid Current, approx<br>Driving Powert, approx<br>Plate Power Output                                                                                                         |                                                 | 125<br>5<br>10<br>40                              | 125<br>1<br>7.5<br>42.5                                  | 100                                          | max                                    | watts<br>volts<br>milliamper<br>watts<br>watts                                  | 'es |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|-----|
| CLASS C R-F POWER AMPLIFIER AND OSCILLA<br>Carrier conditions per tube for use wit                                                                                                                                                   | TOR, PLA<br>h a maxi                            | TE MOI                                            | DULATED<br>odulati                                       | on fact                                      | cor of                                 | 1.0                                                                             |     |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output |                                                 | 750<br>-200<br>0.150<br>0.035<br>350<br>12<br>65  | 10<br>1000<br>-260<br>0.150<br>0.035<br>410<br>14<br>100 | 1000<br>-400<br>0.175<br>0.050<br>175<br>67  | max<br>max<br>max<br>max<br>max<br>max | volts<br>volts<br>ampere<br>ampere<br>watts<br>watts<br>volts<br>watts<br>watts |     |
| CLASS C R-F POWER AMPLIFIER AND OSCILLA<br>Key down conditions per tube without mo                                                                                                                                                   | TOR<br>dulation                                 | ヰ                                                 |                                                          |                                              |                                        |                                                                                 |     |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output | 750<br>-135<br>0.150<br>0.018<br>275<br>5<br>65 | 1000<br>-175<br>0.150<br>0.018<br>315<br>6<br>100 | 10<br>1250<br>-225<br>0.150<br>0.018<br>375<br>7<br>130  | 1250<br>-400<br>0.175<br>0.050<br>220<br>100 | max<br>max<br>max<br>max<br>max        | volts<br>volts<br>ampere<br>ampere<br>watts<br>watts<br>volts<br>watts<br>watts |     |
| <pre>§ Averaged over any audio-frequency cyc<br/>† At crest of audio-frequency cycle.<br/>t Modulation, essentially negative, may</pre>                                                                                              | le.                                             | 1 1f                                              | the po                                                   | sitive                                       | peak                                   | of the aud                                                                      | 10- |

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

The normal value of grid leak, when the tube is used as an oscillator or r-f power amplifier (Class C), is in the neighborhood of 5000 ohms, although this may be replaced by a suitable fixed bias. If self-bias is used the cathode resistor should be approximately 1000 ohms.

The 211 can be operated at frequencies as high as 15 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 80 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                    | 15  | 30 | 80 | megacycles |
|--------------------------------------------------------------|-----|----|----|------------|
| PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE<br>AND PLATE INPUT |     |    |    |            |
| Class B                                                      | 100 | 88 | 70 | per cent   |
| Class C                                                      | 100 | 80 | 50 | per cent   |
|                                                              |     |    |    | -          |

The resonant frequency of the grid-plate circuit is approximately 100 megacycles.



Average Characteristic K-6917435 11-6-39 Outline Transmitting Tube GL-211 K-4909036 9-20-39

www.SteamPoweredRadio.Com

## GENERAL B ELECTRIC SCHENECTADY, N.Y.

6-42 (4M) Filing No. 8850

Supersedes GET-503B
## GENERAL 🍘 ELECTRIC

### **Transmitting Tube GL-217-C -- Description and Rating**

### **Technical Information**

The 217-C is a high-vacuum, half-wave rectifier for use in high-voltage d-c power supply devices operating from the alternating-current supply line.

### CHARACTERISTICS AND RATINGS

| Filament Voltage           | 10    | Volts          |  |
|----------------------------|-------|----------------|--|
| Filament Current           | 3.25  | Amperes        |  |
| Base Description           | Jumbo | 4-large Pin    |  |
| Type of Cooling            |       | Air            |  |
| Net Weight, approx         | 7     | Ounces         |  |
| Shipping Weight, approx    | 3     | Pounds         |  |
| Installation and Operation | GE    | <b>H-10</b> 66 |  |
|                            |       |                |  |

### MAXIMUM RATINGS

| Maximum  | Peak  | Invers | se Voltage    |
|----------|-------|--------|---------------|
| Maximum  | Peak  | Plate  | Current       |
| Tube Vol | ltage | Drop,  | $I_{b} = 600$ |

| 7500 | Volts        |
|------|--------------|
| 600  | Milliamperes |
| 210  | Volts        |



Outline Transmitting Tube GL-217-C K-5182050 6-26-40



Tube Mounting Position Vertical: Base down

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

7-42 (4M) Filing No. 8850 If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com Supersedes GET-762

### **GET-956**



### **Transmitting Tube GL-242-C - Description and Rating**

TECHNICAL INFORMATION

The GL-242-C is a three-electrode transmitting tube for use as an oscillator, radio-frequency amplifier, and audio-frequency amplifier or modulator (Class A or B).

### GENERAL CHARACTERISTICS

### ELECTRICAL

| Filament Voltage                      | 10,  | Volts     |
|---------------------------------------|------|-----------|
| Filament Current                      | 3.25 | Amperes   |
| Amplification Factor $(I_{K} = .068)$ | 12.5 |           |
| Grid-plate Transconductance           | 3600 | Micromhos |
| Direct Interelectrode Capacitances    |      |           |
| Grid-plate                            | 13   | ннţ       |
| Grid-cathode                          | 6.1  | µµf       |
| Plate-cathode                         | 4.7  | ннī       |
|                                       |      |           |

### MECHANICAL

| Base or Terminal Description | Jumbo 4-large Pin |        |
|------------------------------|-------------------|--------|
| Net Weight (approx)          | 8                 | Ounces |
| Shipping Weight (approx)     | 4                 | Pounds |
| Installation and Operation   | GEH-980           |        |

| CLASS A A-F AMPLIFIER AND MODULATOR                                                                                                                                      | Typic<br>Operat                   | ion                             | Maximum*<br>Ratings        |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|----------------------------|--------------------------------------------|
| Filament Voltage (d-c)<br>D-c Plate Voltage                                                                                                                              | 1000                              | 10<br>1250                      | 1250                       | Volts<br>Volts                             |
| Plate Dissipation<br>D-c Grid Voltage<br>Peak Grid Swing (approx)<br>D-c Plate Current                                                                                   | -56<br>56<br>•053                 | -75<br>75<br>.060               | 85                         | Volts<br>Volts<br>Ampere                   |
| Plate Resistance<br>Load Resistance<br>Plate Power Output (5 per cent                                                                                                    | 3800<br>7600                      | 3600<br>9200                    |                            | Ohms<br>Ohms                               |
| second harmonic)                                                                                                                                                         | 12                                | 20                              |                            | Watts                                      |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)                                                                                                                                  |                                   |                                 |                            |                                            |
| Filament Voltage (d-c)<br>D-c Plate Voltage<br>Max Signal Plate Current (per tube)†<br>D-c Max Signal Plate Input (per tube)†                                            | 1000                              | 10<br>1250                      | 1250<br>.150<br>188<br>100 | Volts<br>Volts<br>Ampere<br>Watts<br>Watts |
| D-c Grid Voltage<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current                                                                                             | -72<br>370<br>.020                | -95<br>400<br>.020              |                            | Volts<br>Volts<br>Ampere                   |
| Max Signal Plate Current<br>Max Signal Plate Input <sup>†</sup><br>Max Signal Driving Power (approx)<br>Effective Load (plate to plate)<br>Max Signal Plate Power Output | .300<br>300<br>7.5<br>6000<br>165 | •300<br>375<br>8<br>7600<br>200 |                            | Ampere<br>Watts<br>Watts<br>Ohms<br>Watts  |
| CLASS B R-F POWER AMPLIFIER<br>(Carrier conditions per tube for use with a :                                                                                             | max modulat                       | ion factor                      | of 1.0)                    |                                            |
| Filament Voltage (d-c)<br>D-c Plate Voltage                                                                                                                              | 1000                              | 10<br>1250<br>-95               | 1250                       | Volts<br>Volts                             |
| D-C GLIG VOLGAGE                                                                                                                                                         |                                   |                                 |                            |                                            |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

### www.SteamPoweredRadio.Com

| CLASS B R-F POWER AMPLIFIER (CONT'D)<br>(Carrier conditions per tube for use with a max                                                                                                                                                                                               | Typica<br><u>Operati</u><br>modulatic           | al<br>Lon<br>on factor                                | Maximum*<br>Ratings<br>of 1.0)             |                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|
| D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power (approx)‡                                                                                                                                                                       | .150<br>135<br>12                               | .120<br>160<br>12                                     | .150<br>150<br>100                         | Ampere<br>Watts<br>Watts<br>Volts<br>Watts                                              |
| Plate Power Output                                                                                                                                                                                                                                                                    | 50                                              | 50                                                    | . ·                                        | Watts                                                                                   |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLA (Carrier conditions per tube for use with a max                                                                                                                                                                                      | TE MODULA<br>modulatio                          | ATED<br>on factor                                     | of 1.0)                                    |                                                                                         |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output<br>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR | 750<br>-200<br>.150<br>.035<br>350<br>12<br>65  | 10<br>-260<br>.150<br>.035<br>410<br>14<br>100        | 1000<br>-400<br>.150<br>.050<br>150<br>67  | Volts<br>Volts<br>Volts<br>Ampere<br>Matts<br>Watts<br>Volts<br>Watts                   |
| (Key-down conditions per tube without modulation                                                                                                                                                                                                                                      | )8                                              |                                                       |                                            |                                                                                         |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output                                               | 1000<br>-175<br>.150<br>.020<br>315<br>6<br>100 | 10<br>1250<br>-225<br>.150<br>.020<br>375<br>7<br>130 | 1250<br>-400<br>.150<br>.050<br>188<br>100 | Volts<br>Volts<br>Volts<br>Ampere<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts<br>Watts |
|                                                                                                                                                                                                                                                                                       |                                                 |                                                       |                                            |                                                                                         |

+ Averaged over any audio-frequency cycle.

# At crest of audio-frequency cycle.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

APPLICATION NOTES

\* The GL-242-C can be operated at frequencies as high as 6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 30 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY, MEGACYCLES                                                                | 6   | 15 | 30 |
|--------------------------------------------------------------------------------------|-----|----|----|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: |     |    |    |
| Class B, R-f                                                                         | 100 | 85 | 70 |
| Class C (Plate modulated<br>(Unmodulated                                             | 100 | 75 | 50 |



www.SteamPoweredRadio.Com



PRINTEO IN U.S.A.

5-40 (2500) Filing No. 8850 www.SteamPoweredRadio.Com

**GET-955** 

# GENERAL 🋞 ELECTRIC

### Transmitting Tube GL-276-A - - Description and Rating

TECHNICAL INFORMATION

The GL-276-A is a three-electrode transmitting tube for use as an oscillator, radio-frequency amplifier, and audio-frequency amplifier or modulator (Class A or B).

### GENERAL CHARACTERISTICS

### ELECTRICAL

| Filament Voltage                      | 10   | Volts     |
|---------------------------------------|------|-----------|
| Filament Current                      | 3.0  | Amperes   |
| Amplification Factor $(I_{b} = .060)$ | 12   |           |
| Grid-plate Transconductance           | 3600 | Micromhos |
| Direct Interelectrode Capacitances    |      |           |
| Grid-plate                            | 9    | μμſ       |
| Grid-cathode                          | 6    | μμſ       |
| Plate-cathode                         | 4    | μμſ       |
| MECHANICAL                            |      |           |

BaseJumbo 4-large PinNet Weight (approx)8Shipping Weight (approx)4Installation and OperationGEH-980

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| CLASS A A-F AMPLIFIER AND MODULATOR                                        | Typic<br>Operat | cal<br>tion | Maximum*<br>Ratings |        |
|----------------------------------------------------------------------------|-----------------|-------------|---------------------|--------|
| Filament Voltage, d-c                                                      | 1000            | 1250        | 1250                | Volts  |
| D-C Flate Voltage                                                          | TOOO            | 1290        | 85                  | Wotta  |
| D_c Grid Voltage                                                           | -56             | -75         |                     | Volts  |
| Peak Grid Swing (approx)                                                   | 56              | 75          |                     | Volts  |
| D-c Plate Current                                                          | .053            | .060        |                     | Ampere |
| Plate Resistance                                                           | 3800            | 3600        |                     | Ohms   |
| Load Resistance                                                            | 7600            | 9200        |                     | Ohms   |
| Plate Power Output (5 per cent                                             |                 |             |                     |        |
| second harmonic)                                                           | 12              | 20          |                     | Watts  |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)                                    |                 |             |                     |        |
| Filament Voltage                                                           |                 | 10          |                     | Volts  |
| D-c Plate Voltage                                                          | 1000            | 1250        | 1250                | Volts  |
| Max Signal Plate Current (per tube)†                                       |                 |             | .125                | Ampere |
| D-c Max Signal Plate Input (per tube)†                                     |                 |             | 156                 | Watts  |
| Plate Dissipation (per tube)†                                              |                 |             | 100                 | Watts  |
| D-c Grid Voltage                                                           | -72             | -95         |                     | Volts  |
| Peak A-f Grid Input Voltage                                                | 320             | 390         |                     | Volts  |
| Zero Signal Plate Current                                                  | .020            | .020        |                     | Ampere |
| Maximum Signal Plate Current                                               | .250            | .250        |                     | Ampere |
| Maximum Signal Plate Input                                                 | 250             | 312         |                     | Watts  |
| Max Signal Driving Power (approx)                                          | 7000            | 7.5         |                     | Watts  |
| Effective Load (plate to plate)                                            | 7000            | 9000        |                     | Unms   |
| Max Signal Plate Power Output                                              | 125             | 115         |                     | watts  |
| CLASS B R-F POWER AMPLIFIER<br>(Carrier conditions per tube for use with a | max modulat     | ion facto   | r of 1.0)           |        |
| Filament Voltage. d-c                                                      |                 | 10          |                     | Volts  |
| D-c Plate Voltage                                                          | 1000            | 1250        | 1250                | Volts  |
| D-c Grid Voltage                                                           | -72             | -95         |                     | Volts  |

#### www.SteamPoweredRadio.Com

| CLASS B R-F POWER AMPLIFIER (CONT'D)<br>(Carrier conditions per tube for use with a mag                                                                                                                                                 | Typi<br><u>Opera</u><br>x modula                         | cal<br><u>tion</u><br>tion factor                              | Maximum*<br>Ratings<br>of 1.0)             |                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|
| D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power (approx)<br>Plate Power Output                                                                                                    | .125<br>125<br>10<br>42                                  | .120<br>145<br>10<br>50                                        | .125<br>150<br>100                         | Ampere<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts                                     |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - P.<br>(Carrier conditions per tube for use with a max                                                                                                                                      | LATE MOD<br>x modula                                     | ULATED<br>tion factor                                          | of 1.0)                                    |                                                                                         |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output | 750<br>-200<br>.125<br>.035<br>.035<br>.25<br>.12<br>.55 | 10<br>1000<br>-260<br>.125<br>.035<br>.035<br>.85<br>14<br>.85 | 1000<br>-400<br>.125<br>.050<br>125<br>67  | Volts<br>Volts<br>Volts<br>Ampere<br>Matts<br>Watts<br>Volts<br>Watts<br>Watts<br>Watts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR (Key-down conditions per tube without modulations)                                                                                                                                           | on)§                                                     |                                                                |                                            |                                                                                         |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation                                                                                         | 1000<br>-175<br>.125<br>.020                             | 10<br>1250<br>-225<br>.125<br>.020                             | 1250<br>-400<br>.125<br>.050<br>156<br>100 | Volts<br>Volts<br>Volts<br>Ampere<br>Ampere<br>Watts<br>Watts                           |
| Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output                                                                                                                                                    | 290<br>6<br>85                                           | 350<br>7<br>100                                                |                                            | Volts<br>Watts<br>Watts                                                                 |

+ Averaged over any audio-frequency cycle.

# At crest of audio-frequency cycle.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

### APPLICATION NOTES

\* The GL-276-A can be operated at frequencies as high as 20 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 20  | 45 | 100 |
|--------------------------------------------------------------------------------------|-----|----|-----|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: |     |    |     |
| Class B, R-f                                                                         | 100 | 85 | 70  |
| Class C (Plate modulated<br>(Unmodulated                                             | 100 | 75 | 50  |



Outline Transmitting Tube GL-276-A K-4909036 4-4-40

> Average Characteristics for Transmitting Tube GL-276-A K-6917435 4-11-40

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



### **ELECTRONICS DEPARTMENT**

## GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-800 - - Description and Rating-

The 800 is a three-electrode transmitting tube designed for use as a radio-frequency amplifier or oscillator, particularly at the higher radio frequencies.

### CHARACTERISTICS AND RATINGS

| Filament Voltage (a-c or d-c)       | 7.5    | Volts         |
|-------------------------------------|--------|---------------|
| Filament Current                    | 3.25   | Amperes       |
| Amplification Factor                | 15     |               |
| Direct Interelectrode Capacitances: |        |               |
| Grid-plate                          | 2.5    | µµſ           |
| Grid-filament                       | 2.75   | μųſ           |
| Plate-filament                      | 2.75   | цµf           |
| Base                                | Medium | 4-pin Bayonet |
|                                     |        |               |

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AS A-F POWER AMPLIFIER AND MODULATOR - CLASS B

| D-c Plate Voltage<br>Max Signal D-c Plate Current*<br>Max Signal Plate Input*<br>Plate Dissipation*<br>Typical Operation: |        |         | 1250 max<br>115 max<br>85 max<br>35 max | Volts<br>Milliamperes<br>Watts<br>Watts |
|---------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------------------------------------|-----------------------------------------|
| Unless otherwise specified,                                                                                               | values | are for | 2 tubes                                 |                                         |
| D-c Plate Voltage                                                                                                         | 750    | 1000    | 1250                                    | Volts                                   |
| D-c Grid Voltaget                                                                                                         | -40    | -55     | -70                                     | Volts                                   |
| Peak A-f Grid-to-grid Voltage                                                                                             | 320    | 300     | 300                                     | Volts                                   |
| Zero Signal D-c Plate Current                                                                                             | 26     | 28      | 30                                      | Milliamperes                            |
| Max Signal D-c Plate Current                                                                                              | 210    | 160     | 130                                     | Milliamperes                            |
| Load Resistance (per tube)                                                                                                | 1600   | 31 25   | 5250                                    | Ohms                                    |
| Effective Load Resistance                                                                                                 |        |         |                                         |                                         |
| (plate-to-plate)                                                                                                          | 6400   | 12500   | 21000                                   | Ohms                                    |
| Max Signal Driving Power (approx)                                                                                         | 6      | 4.4     | 3.4                                     | Watts                                   |
| Max Signal Power Output (approx)                                                                                          | 90     | 100     | 106                                     | Watts                                   |

AS R-F POWER AMPLIFIER - CLASS B TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage           |     | 1250 max | Volts        |
|-----------------------------|-----|----------|--------------|
| D-c Plate Current           |     | 45 max   | Milliamperes |
| Plate Input                 |     | 50 max   | Watts        |
| Plate Dissipation           |     | 35 max   | Watts        |
| Typical Operation:          |     |          |              |
| D-c Plate Voltage           | 750 | 1000     | Volts        |
| D-c Grid Voltaget           | -40 | -55      | Volts        |
| Peak R-f Grid Voltage       | 160 | 170      | Volts        |
| D-c Plate Current           | 45  | 42       | Milliamperes |
| D-c Grid Current (approx)** | 2   | 2        | Milliamperes |
| Driving Power (approx)**0   | 3.6 | 3.3      | Watts        |
| Power Output (approž)       | 10  | 14       | Watts        |

AS PLATE-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage | 1000 | max | Volts        |
|-------------------|------|-----|--------------|
| D-c Grid Voltage  | -400 | max | Volts        |
| D-c Plate Current | 80   | max | Milliamperes |
| D-c Grid Current  | 25   | max | Milliamperes |
| Plate Input       | 80   | max | Watts        |
| Plate Dissipation | 23   | max | Watts        |

| T | pical Operation:            |       |       |              |
|---|-----------------------------|-------|-------|--------------|
|   | D-c Plate Voltage           | 750   | 1000  | Volts        |
|   | D-c Grid Voltage            | -150  | -200  | Volts        |
|   | Peak R-f Grid Voltage       | 275   | 325   | Volts        |
|   | D-c Plate Current           | 70    | 70    | Milliamperes |
|   | D-c Grid Current (approx)** | 15    | 15    | Milliamperes |
|   | Grid Resistor               | 10000 | 13300 | Ohms         |
|   | Driving Power (approx)**    | 3     | 4     | Watts        |
|   | Power Output (approx)       | 35    | 50    | Watts        |
|   |                             |       |       |              |

AS R-F POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY Key-down conditions per tube without modulation##

| D-c Plate Voltage           |      |         | 1250  | max | Volts        |
|-----------------------------|------|---------|-------|-----|--------------|
| D-c Grid Voltage            |      |         | -400  | max | Volts        |
| D-c Plate Current           |      |         | 80    | max | Milliamperes |
| D-c Grid Current            |      |         | 25    | max | Milliamperes |
| Plate Input                 |      |         | 100   | max | Watts        |
| Plate Dissipation           |      |         | 35    | max | Watts        |
| Typical Operation:          |      | * 1 Lat |       |     |              |
| D-c Plate Voltage           | 750  | 1000    | 1250  |     | Volts        |
| D-c Grid Voltage            | -100 | -135    | -175  |     | Volts        |
| Peak R-f Grid Voltage       | 225  | 260     | 300   |     | Volts        |
| D-c Plate Current           | 70   | 70      | 70    |     | Milliamperes |
| D-c Grid Current (approx)** | 15   | 15      | 15    |     | Milliamperes |
| Grid Resistor               | 6700 | 9000    | 11700 |     | Ohms         |
| Driving Power (approx)**    | 2    | 3       | 4     |     | Watts        |
| Power Output (approx)       | 35   | 50      | 65    |     | Watts        |

\* Averaged over any audio-frequency cycle of sine-wave form.

† Grid voltages are given with respect to the midpoint of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be decreased by 5 volts and the circuit returns made to the negative end of the filament.

<sup>O</sup> At crest of audio-frequency cycle with modulation factor of 1.0.

- **##** Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
- \*\* Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power.

The maximum ratings apply only at frequencies below 60 megacycles. For operation at higher frequencies, adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| Frequency, Megacycles    | 60  | 100 | 180 |
|--------------------------|-----|-----|-----|
| Percentage of Maximum    |     |     |     |
| Rated Plate Voltage and  |     |     |     |
| Plate Input              |     |     |     |
| Class B                  | 100 | 90  | 79  |
| Class C. Plate-modulated | 100 | 80  | 55  |
| Class C, Telegraphy      | 100 | 80  | 55  |



# GENERAL B ELECTRIC SCHENECTADY, N.Y.

Supersedes GET-753



### **Transmitting Tube GL-801 - - Description and Rating**

### Technical Information

The GL-801 is a three-electrode high-vacuum tube for use as a radio-frequency amplifier and oscillator at high radio frequencies. It may also be used as an audiofrequency amplifier and modulator. The design of the tube is such that it may be operated at full ratings at frequencies as high as 60 megacycles.

These data are for reference only. For design information see the specifications.

CHARACTERISTICS AND RATINGS

| Filament Voltage                    | 7.5          | Volts            |
|-------------------------------------|--------------|------------------|
| Filament Current                    | 1.25         | Amperes          |
| Amplification Factor $(I_b = .030)$ | 8            |                  |
| Grid-plate Transconductance         | 1840         | Micromhos        |
| Direct Interelectrode Capacitances: |              |                  |
| Grid-plate                          | 6            | μμſ              |
| Grid-filament                       | 4.5          | Ίμμ              |
| Plate-filament                      | 1.5          | ццſ              |
| Base or Terminal Description        | Medium 4-pin | Ceramic, Bayonet |
| Net Weight, approx                  | 3            | Ounces           |
| Shipping Weight, approx             | 3            | Pounds           |
| Installation and Operation          |              | <b>GEH-</b> 980  |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Typical

Maximum

|                                                                                                                                         | Oper                               | ating Co                          | nditions                          | Ratings  |                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----------|--------------------------------------------------------|
| CLASS A1 A-F POWER AMPLIFIER AND                                                                                                        | MODULATOR                          |                                   |                                   |          |                                                        |
| D-c Plate Voltage<br>D-c Grid Voltage§<br>D-c Plate Current                                                                             | 425<br>-40<br>18                   | 500<br>-45<br>24                  | 600<br>-55<br>30                  | 600      | Volts<br>Volts<br>Ma                                   |
| Plate Dissipation<br>Peak A-f Grid Voltage<br>Plate Resistance<br>Transconductance<br>Load Resistance<br>U.P.O. 5% Second Harmonic      | 35<br>5000<br>1600<br>10200<br>1.6 | 40<br>4600<br>1725<br>8000<br>2.3 | 50<br>4300<br>1840<br>7800<br>3.8 | 20       | Watts<br>Volts<br>Ohms<br>Micromhos<br>Ohms<br>Watts   |
| CLASS B A-F POWER AMPLIFIER (TWO                                                                                                        | TUBES)                             |                                   |                                   |          |                                                        |
| D-c Plate Voltage<br>Maximum Signal Plate Current                                                                                       | 400                                | 500                               | 600                               | 600      | Volts                                                  |
| (per tube)*<br>D-c Maximum Signal Plate Input                                                                                           |                                    |                                   |                                   | 70       | Milliamperes                                           |
| (per tube)*<br>Plate Dissipation (per tube)*<br>D-c Grid Voltage<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current            | -50<br>270                         | -60<br>290                        | -75<br>320                        | 42<br>20 | Watts<br>Watts<br>Volts<br>Volts                       |
| Maximum Signal Plate Current<br>Maximum Signal Driving Power (ap<br>Effective Load (plate-to-plate)<br>Maximum Signal Plate Power Outpu | 130<br>prox) 3<br>6000<br>t 27     | 130<br>3<br>8000<br>36            | 130<br>3<br>10000<br>45           |          | Milliamperes<br>Milliamperes<br>Watts<br>Ohms<br>Watts |

\* Averaged over any audio-frequency cycle.

§ The d-c resistance in the grid circuit should not exceed 0.5 megohm with cathode bias, or 0.1 megohm with fixed bias.

If You Didn't Get This From My Site, Then It Was Stolen From ... www.SteamPoweredRadio.Com



|                                          | 0-   | Typic     | al          | Maximu | m  |              |
|------------------------------------------|------|-----------|-------------|--------|----|--------------|
| CLASS B R-F POWER AMPLIFIER              | Ope  | erating ( | ,onur crons | Racing | 3  |              |
| Carrier conditions per tube for use with | h a  | maximum   | modulation  | factor | of | 1.0          |
| D-c Plate Voltage                        |      | 500       | 600         | 600    |    | Volts        |
| D-c Grid Voltage∆                        |      | -60       | -75         |        |    | Volts        |
| D-c Plate Current                        |      | 45        | 45          | 50     |    | Milliamperes |
| Plate Input                              |      |           |             | 30     |    | Watts        |
| Plate Dissipation                        |      |           |             | 20     |    | Watts        |
| Peak R-f Grid Input Voltage              |      | 85        | 90          |        |    | Volts        |
| D-c Grid Current, approx**               |      | .2        | .2          |        |    | Milliampere  |
| Driving Power, approx **                 |      | 2.2       | 2.3         |        |    | Watts        |
| Plate Power Output                       |      | 6         | 7.5         |        |    | Watts        |
| CLASS C R-F POWER AMPLIFIER AND OSCILLA  | FOR  | - PLATE   | MODULATED   |        |    |              |
| Carrier conditions per tube for use with | h a  | maximum   | modulation  | factor | of | 1.0          |
| D-c Plate Voltage                        |      | 400       | 500         | 500    |    | Volts        |
| D-c Grid Voltage∆◊                       |      | -150      | -190        | -200   |    | Volts        |
|                                          |      | 10000     | 12700       |        |    | Ohms         |
| D-c Plate Current                        |      | 55        | 55          | 60     |    | Milliamperes |
| D-c Grid Current, approx**               |      | 15        | 15          | 15     |    | Milliamperes |
| Plate Input                              |      |           |             | 30     |    | Watts        |
| Plate Dissipation                        |      |           |             | 13.5   |    | Watts        |
| Peak R-f Grid Input Voltage, approx      |      | 260       | 300         |        |    | Volts        |
| Driving Power, approx**                  |      | 4         | 4.5         |        |    | Watts        |
| Plate Power Output                       |      | 14        | 18          |        |    | Watts        |
| CLASS C R-F POWER AMPLIFIER AND OSCILLAT | OR   |           |             |        |    |              |
| Key-down conditions per tube without mod | lula | ation‡    |             |        |    |              |
| D-c Plate Voltage                        |      | 500       | 600         | 600    |    | Volts        |
| D-c Grid Voltage $\Delta \pi$            |      | -125      | -150        | -200   |    | Volts        |
|                                          |      | 8300      | 10000       |        |    | Ohms         |
|                                          |      | 1560      | 1875        |        |    | Ohms         |
| D-c Plate Current                        |      | 65        | 65          | 70     |    | Milliamperes |
| D-c Grid Current, approx                 |      | 15        | 15          | 15     |    | Milliamperes |
| Plate Input                              |      |           |             | 42     |    | Watts        |
| Plate Dissipation                        |      |           |             | 20     |    | Watts        |
| Peak R-f Grid Input Voltage, approx      |      | 235       | 260         |        |    | Volts        |
| Driving Power, approx                    |      | 3.5       | 4           |        |    | Watts        |
| Plate Power Output                       |      | 20        | 25          |        |    | Watts        |

+ At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

 $\Delta$  With a-c filament supply.

- \*\*Subject to wide variation depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power but plate circuit efficiency is sacrificed. The driving stage should have a tank circuit of good regulation and should be capable of delivering considerably more than the required driving power.
- ◊ Obtained by grid resistor of value shown, or by combination of grid resistor with either fixed supply or suitably by-passed cathode resistor.
- $\pi$  Obtained from fixed supply, by grid resistor (8300, 10000), or by cathode resistor (1560, 1875). When the 801 is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. With a plate voltage of 600 volts, a fixed bias of at least 50 volts should be used.

The normal value of grid leak when the tube is used as an oscillator or r-f amplifier (Class C), is in the neighborhood of 10,000 ohms, although this may be replaced by a suitable fixed bias. If self-bias is used the cathode resistor should be approximately 2000 ohms.

The maximum ratings apply only at frequencies below 60 megacycles. For operation at higher frequencies adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| FREQUENCY                | 60  | 75 | . 120 | Mc |
|--------------------------|-----|----|-------|----|
| PERCENTAGE OF MAXIMUM    |     |    |       |    |
| RATED PLATE VOLTAGE      |     |    |       |    |
| AND PLATE INPUT          |     |    |       |    |
| Class B                  | 100 | 93 | 78    |    |
| Class C, plate modulated | 100 | 80 | 50    |    |
| Class C, telegraphy      | 100 | 80 | 50    |    |



Typical Characteristics for Transmitting Tube GL-801 K-6917432 10-17-39







Outline Transmitting Tube GL-801 K-6912326 10-9-39

### GENERAL B ELECTRIC SCHENECTADY, N.Y.

2-42 (4M) Filing No. 8850

### ELECTRONICS DEPARTMENT

### GENERAL & ELECTRIC

### Transmitting Tube GL-802 - - Description and Rating

The 802 is a pentode transmitting tube of the heater-cathode type having a maximum plate-dissipation rating of 13 watts (ICAS). The tube requires a driving power of only 1 watt or less, depending on the service in which it is used. The versatility of this pentode makes it well-suited for use as an r-f amplifier, frequency multiplier, oscillator, and suppressor-, grid- or plate-modulated amplifier. It may also be used as a Class A pentode amplifier or modulator. The plate connection is brought out of the tube through a separate seal at the top of the bulb to maintain low gridplate capacitance. The suppressor and the special internal shield of this tube are connected to individual base pins. Neutralization is unnecessary in adequately shielded circuits. In r-f service, the 802 may be operated at maximum ratings at frequencies as high as 30 mc and at reduced ratings up to 110 mc.

#### **R-F POWER AMPLIFIER PENTODE**

| Heatere       | Coated Unipotential Cathode     |       |                  |
|---------------|---------------------------------|-------|------------------|
| Voltage       |                                 | 6.3 8 | a-c or d-c volts |
| Current       |                                 | 0.9   | amp              |
| Transconducts | ance for Plate Current of 20 ma | 2250  | umhos            |
| Direct Intere | electrode Capacitances          |       |                  |
| Grid to Pla   | ate (with external shielding)   | 0.15  | max µµf          |
| Input         |                                 | 12    | μµf              |
| Output        |                                 | 8.5   | рнт<br>Тин       |
| Cap           |                                 |       | Small Metal      |
| Base          |                                 | Media | um 7-Pin Bayonet |
| Net Weight, a | approx                          |       | 5 ounces         |
| Shipping Weig | ght, approx                     |       | 3 lb             |
| Installation  | and Operation                   |       | GEH-1116         |

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

A-F POWER AMPLIFIER AND MODULATOR - CLASS A

|                              |   |       | CCS   |       |       | ICAS  | S   |       |
|------------------------------|---|-------|-------|-------|-------|-------|-----|-------|
| D-c Plate Voltage            |   |       | 500   | max   |       | 600 r | max | volts |
| D-c Screen Voltage (Grid #2) |   |       | 250   | max   |       | 250 I | max | volts |
| Plate Input                  |   |       | 15    | max   |       | 18 1  | max | watts |
| Screen Input                 |   |       | 3     | max   |       | 3 1   | max | watts |
| Typical Operation:           |   |       |       |       |       |       |     |       |
| D-c Plate Voltage            |   | 400   | 500   | 500   | 600   |       |     | volts |
| Suppressor (Grid #3)         |   | 0*    | 0     | * 01  | * 40  |       |     | volts |
| D-c Screen Voltage           |   | 250   | 175   | 225   | 250   |       |     | volts |
| D-c Grid Voltage (Grid #1)0  | X | (-18  | -10   | -17   | -18.5 | j     |     | volts |
| <b>U</b>                     |   | (450  | 325   | 530   | 490   |       |     | ohms  |
| Peak A-f Grid Voltage        |   | 18    | 10    | 17    | -18.5 | ,     |     | volts |
| Internal Shield*             |   | -     |       |       | -     |       |     |       |
| D-c Plate Current            |   | 30    | 25    | 25    | 30    |       |     | ma    |
| D-c Screen Current           |   | 10    | 6     | 7     | 8     |       |     | ma    |
| Load Resistance              |   | 10000 | 18000 | 16000 | 13200 |       |     | ohms  |
| Total Har. Distortion        |   | 8     | 4     | 10    | 9     |       |     | %     |
| Power Output                 |   | 5.5   | 4     | 6.5   | 7.6   |       |     | watts |

• In circuits where the cathode is not directly connected to the heater, the potential difference between them should not exceed 100 volts.

\* Connected to cathode at socket.

◊ Obtained from fixed supply or by cathode resistor of value shown. The d-c resistance in the grid circuit should not exceed 10000 ohms with fixed bias, or 50000 ohms with cathode bias.

### R-F POWER AMPLIFIER - CLASS B TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0

|                                     | <u>C(</u> | <u>SS</u> |      | ICAS      |
|-------------------------------------|-----------|-----------|------|-----------|
| D-c Plate Voltage                   | 500       | max       | 600  | max volts |
| D-c Suppressor Voltage (Grid #3)    | 200       | max       | 200  | max volts |
| D-c Screen Voltage (Grid #2)        | 250       | max       | 250  | max volts |
| D-c Plate Current                   | .30       | max       | 30   | max ma    |
| Plate Input                         | 15        | max       | 18   | max watts |
| Suppressor Input                    | 2         | max       | 2    | max watts |
| Screen Input                        | 4         | max       | 4    | max watts |
| Plate Dissipation                   | 10        | max       | 13   | max watts |
| Typical Operation:                  |           |           |      |           |
| D-c Plate Voltage                   | 400       | 500       | 600  | volts     |
| Suppressor*+                        |           | -         |      |           |
| D-c Screen Voltage                  | 150       | 200       | 225  | volts     |
| D-c Grid Voltage (Grid #1)          | -22       | -28       | -30  | volts     |
| Peak R-f Grid Voltage               | 35        | 32        | 35   | volts     |
| Internal Shield*                    | -         | -         |      |           |
| D-c Plate Current                   | 25        | 25        | 30   | ma        |
| D-c Screen Current                  | 6.5       | 7         | 8    | ma        |
| D-c Grid Current (approx)           | 1         | 0         | 0.5  | ma        |
| Driving Power (approx) <sup>o</sup> | 0.5       | 0.18      | 0.18 | watts     |
| Power Output (approx)               | 2.75      | 3.5       | 5.3  | watts     |

\* Connected to cathode at socket.

+ Applying a positive voltage of not more than 40 volts to the suppressor gives slightly increased output.

o At crest of a-f cycle with modulation factor of 1.0

SUPPRESSOR-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0.

|                                  |        | CCS   |     |       | <u>I(</u> | CAS |       |
|----------------------------------|--------|-------|-----|-------|-----------|-----|-------|
| D-c Plate Voltage                |        | 500   | max |       | 600       | max | volts |
| D-c Screen Voltage (Grid #2)     |        | 200   | max |       | 250       | max | volts |
| D-c Grid Voltage (Grid #1)       |        | -200  | max |       | -200      | max | volts |
| D-c Plate Current                |        | 30    | max |       | 30        | max | ma    |
| D-c Grid Current                 |        | 7.5   | max |       | 7.5       | max | ma    |
| Plate Input                      |        | 15    | max |       | 18        | max | watts |
| Screen Input                     |        | 6     | max |       | 6         | max | watts |
| Plate Dissipation                |        | 10    | max |       | 13        | max | watts |
| Typical Operation                |        |       |     |       |           |     |       |
| D-c Plate Voltage                | 400    | 500   |     | 500   | 600       |     | volts |
| D-c Suppressor Voltage (Grid #3) | -40    | -53   |     | -45   | -45       |     | volts |
| D-c Screen Voltage∆              | 8900   | 10700 |     | 10700 | 14500     |     | ohms  |
| D-c Grid Voltage+                | ( -85  | -90   |     | -90   | -100      |     | volts |
|                                  | (11000 | 18000 |     | 20000 | 20000     |     | ohms  |
| Peak A-f Sup'r Voltage           | 40     | 53    |     | 65    | 65        |     | volts |
| Peak R-f Grid Voltage            | 125    | 125   |     | 125   | 125       |     | volts |
| Internal Shield*                 | -      | 1     |     | -     | -         |     |       |
| D-c Plate Current                | 18     | 20    |     | 22    | 30        |     | ma    |
| D-c Screen Current               | 28     | 28    |     | 28    | 24        |     | ma    |
| D-c Grid Current (approx)        | 7.5    | 5     |     | 4.5   | 5         |     | ma    |
| Driving Power (approx)           | 0.9    | 0.6   |     | 0.5   | 0.6       |     | watts |
| Power Output (approx)            | 2      | 3     |     | 3.5   | 6.3       |     | watts |

\* Connected to cathode at socket.

△ Voltage taken from unmodulated plate-voltage supply through resistor of value shown.

+ From fixed supply or grid resistor of value shown.

### GRID-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0.

|                                                                                                                   | CCS                       |          | IC    | AS        |
|-------------------------------------------------------------------------------------------------------------------|---------------------------|----------|-------|-----------|
| D-c Plate voltage                                                                                                 | 500 max                   |          | 600   | max volts |
| D-c Suppressor Voltage (Grid #3)                                                                                  | 200 max                   |          | 200   | max volts |
| D-c Screen Voltage (Grid #2)                                                                                      | 250 max                   |          | 250   | max volts |
| D-c Grid Voltage (Grid #1)                                                                                        | -200 max                  |          | -200  | max volts |
| D-c Plate Current                                                                                                 | 30 max                    |          | 30    | max ma    |
| Plate Input                                                                                                       | 15 max                    |          | 18    | max watts |
| Suppressor Input                                                                                                  | 2 max                     |          | 2     | max watts |
| Screen Input                                                                                                      | 4 max                     |          | 4     | max watts |
| Plate Dissipation                                                                                                 | 10 max                    |          | 13    | max watts |
| Typical Operation:                                                                                                |                           |          |       |           |
| D-c Plate Voltage                                                                                                 | 400                       | 500      | 600   | volts     |
| Suppressor*+                                                                                                      |                           | -        | 10.00 |           |
| D-c Screen Voltage                                                                                                | 150                       | 200      | 250   | volts     |
| D-c Grid Voltage                                                                                                  | -105                      | -130     | -130  | volts     |
| Peak A-f Grid Voltage                                                                                             | 40                        | 50       | 50    | volts     |
| Peak R-f Grid Voltage                                                                                             | 125                       | 145      | 145   | volts     |
| Internal Shield*                                                                                                  | -                         | -        | -     |           |
| D-c Plate Current                                                                                                 | 25                        | 25       | 30    | ma        |
| D-c Screen Current                                                                                                | 7.5                       | 8        | 8     | ma        |
| D-c Grid Current (approx)                                                                                         | 2                         | 1        | 1     | ma        |
| Driving Power (approx) <sup>o</sup>                                                                               | 1                         | 0.8      | 0.8   | watt      |
| Power Output (approx)                                                                                             | 3                         | 4        | 6     | watts     |
| o At crest of a-f cycle with modulation fact<br>PLATE-MODULATED R-F POWER AMPLIFIER - CLASS<br>Pentode Connection | or of 1.0.<br>C TELEPHONY |          |       |           |
| Carrier conditions per tube for use with a m                                                                      | ax modulation f           | actor of | 1.0   | 1         |
| D-c Plate Voltage                                                                                                 | 400 max                   |          | 500   | max volts |
| D-c Suppressor Voltage (Grid #3)                                                                                  | 200 max                   |          | 200   | max volts |
| D-c Screen Voltage (Grid #2)                                                                                      | 200 max                   |          | 250   | max volts |
| D-c Grid Voltage (Grid #1)                                                                                        | -200 max                  |          | -200  | max volts |
| D-c Plate Current                                                                                                 | 40 max                    |          | 40    | max ma    |
| D-c Grid Current                                                                                                  | 7.5 max                   |          | 7.5   | max ma    |
| Plate Input                                                                                                       | 16 max                    |          | 20    | max watts |
| Suppressor Input                                                                                                  | 2 max                     |          | 2     | max watts |
| Screen Input                                                                                                      | 4 max                     |          | 4     | max watts |
| Plate Dissipation                                                                                                 | 6.7 max                   |          | 8     | max watts |
| Typical Operation                                                                                                 | 1.00                      |          | 500   |           |
| D-c Plate Voltage                                                                                                 | 400                       |          | 500   | volts     |
| D-c Suppressor Voltage                                                                                            | 40                        |          | 40    | volts     |
| D-c Screen Voltage#                                                                                               | (11500                    |          | 245   | VOLTS     |
| D a Crid Valtaget                                                                                                 | (11500                    |          | 10300 | onms      |
| D-c Grid Voltaget                                                                                                 | (27000                    |          | -40   | VOILS     |
| Peak R-f Grid Voltage                                                                                             | (21000                    |          | 2/000 | unms      |
| Internal Shield*                                                                                                  | - 20                      |          | 22    | VOICS     |
| D-c Plate Current                                                                                                 | 35                        |          | 40    | ma        |
| D-c Screen Current                                                                                                | 17                        |          | 15    | ma        |
| D-c Grid Current (approx)                                                                                         | 1.5                       |          | 1.5   | ma        |
| Driving Power (approx)                                                                                            | 0.1                       |          | 0.1   | watt      |
| Power Output (approx)                                                                                             | 8                         |          | 12    | watts     |

**#** Obtained by grid resistor of value shown or by partial self-bias methods.  $\pi$  From modulated fixed supply or modulated plate-voltage supply through resistor of value shown.

### PLATE-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Tetrode Connection - Grids #2 and #3 tied together Carrier conditions per tube for use with a max modulation factor of 1.0

|                                      | CCS      | <u>IC</u>        | AS        |
|--------------------------------------|----------|------------------|-----------|
| D-c Plate Voltage                    | 400 max  | 500              | max volts |
| D-c Screen Voltage (Grids #2 and #3) | 200 max  | 200              | max volts |
| D-c Grid Voltage (Grid #1)           | -200 max | -200             | max volts |
| D-c Plate Current                    | 40 max   | 40               | max ma    |
| D-c Grid Current                     | 7.5 max  | 7.5              | max ma    |
| Plate Input                          | 16 max   | 20               | max watts |
| Screen Input                         | 6 max    | 6                | max watts |
| Plate Dissipation                    | 6.7 max  | 8                | max watts |
| Typical Operation:                   |          |                  | 1.000     |
| D-c Plate Voltage                    | 400      | 500              | volts     |
| D-c Screen Voltageø                  | ( 85     | 195              | volts     |
|                                      | (15000   | 18000            | ohms      |
| D-c Grid Voltage§                    | -120     | -120             | volts     |
|                                      | (20000   | 20000            | ohms      |
| Peak R-f Grid Voltage                | 160      | 160              | volts     |
| Internal Shield*                     |          |                  |           |
| D-c Plate Current                    | 35       | 40               | ma        |
| D-c Screen Current                   | 21       | 17               | ma        |
| D-c Grid Current (approx)            | 6        | 6                | ma        |
| Driving Power (approx)               | 0.9      | 0.9              | watt      |
| Power Output (approx)                | 8        | 12               | watts     |
|                                      |          | autaton of walue | shown     |

Ø Preferably from unmodulated plate-voltage supply through resistor of value shown. § Obtained by grid resistor of value shown or by partial self-bias methods. \* Connected to cathode at socket.

R-F POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY Pentode Connection

Key down conditions per tube without modulation ¶

| D-c Plate Voltage                                                                                              |     |        | 500   | max |       | 600   | max | volts |
|----------------------------------------------------------------------------------------------------------------|-----|--------|-------|-----|-------|-------|-----|-------|
| D-c Suppressor Voltage (Grid #                                                                                 | ¥3) |        | 200   | max |       | 200   | max | volts |
| D-c Screen Voltage (Grid #2)                                                                                   |     |        | 250   | max |       | 250   | max | volts |
| D-c Grid Voltage (Grid #1)                                                                                     |     |        | -200  | max |       | -200  | max | volts |
| D-c Plate Current                                                                                              |     |        | 60    | max |       | 60    | max | ma    |
| D-c Grid Current                                                                                               |     |        | 7.5   | max |       | 7.5   | max | ma    |
| Plate Input                                                                                                    |     |        | 25    | max |       | 33    | max | ma    |
| Suppressor Input                                                                                               |     |        | 2     | max |       | 2     | max | watts |
| Screen Input                                                                                                   |     |        | 6     | max |       | 6     | max | watts |
| Plate Dissipation                                                                                              |     |        | 10    | max |       | 13    | max | watts |
| Typical Operation:                                                                                             |     |        |       |     |       |       |     |       |
| D-c Plate Voltage                                                                                              |     | 400    | 500   |     | 500   | 600   |     | volts |
| D-c Suppressor Voltage                                                                                         |     | - 0    | 0     |     | 40    | 40    |     | volts |
| D-c Screen Voltage                                                                                             |     | ( 200  | 200   |     | 250   | 250   |     | volts |
|                                                                                                                |     | (8000  | 13600 |     | 20800 | 22000 |     | ohms  |
|                                                                                                                |     | ( -100 | -100  |     | -100  | -120  |     | volts |
| D-c Grid Voltage∆∆                                                                                             |     | (14000 | 17000 |     | 50000 | 42000 |     | ohms  |
| , and the second se |     | ( 1300 | 1370  |     | 1700  | 1620  |     | ohms  |
| Peak R-f Grid Voltage                                                                                          |     | 155    | 155   |     | 155   | 165   |     | volts |
| Internal Shield*                                                                                               |     |        |       |     | -     | -     |     |       |
| D-c Plate Current                                                                                              |     | 45     | 45    |     | 45    | 55    |     | ma    |
| D-c Screen Current                                                                                             |     | 25     | 22    |     | 12    | 16    |     | ma    |
| D-c Grid Current (approx)                                                                                      |     | 7      | 6     |     | 2     | 2.4   |     | ma    |
| Driving Power (approx)                                                                                         |     | 1.1    | 0.9   |     | 0.25  | 0.3   |     | watt  |
| Power Output (approx)                                                                                          |     | 10     | 14    |     | 16    | 23    |     | watts |
|                                                                                                                |     |        |       |     |       |       |     |       |

Notes for above on following page.

R-F POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY Tetrode Connection - Grids #2 and #3 tied together Key-down conditions per tube without modulation¶

|                                      | CCS    |     |       |         | I   | CAS |       |
|--------------------------------------|--------|-----|-------|---------|-----|-----|-------|
| D-c Plate Voltage                    | 500    | max |       |         | 600 | max | volts |
| D-c Screen Voltage (Grids #2 and #3) | 200    | max |       |         | 200 | max | volts |
| D-c Grid Voltage (Grid #1)           | -200   | max |       |         | 200 | max | volts |
| D-c Plate Current                    | 60     | max |       | 19 10 1 | 60  | max | ma    |
| D-c Grid Current                     | 7.5    | max |       |         | 7.5 | max | ma    |
| Plate Input                          | 25     | max |       |         | 33  | max | watts |
| Screen Input                         | 6      | max |       |         | 6   | max | watts |
| Plate Dissipation                    | 10     | max |       |         | 13  | max | watts |
| Typical Operation:                   |        |     |       |         |     |     |       |
| D-c Plate Voltage                    | 400    |     | 500   | 60      | О   |     | volts |
| D-c Screen Voltage                   | ( 100  |     | 100   | 15      | О   |     | volts |
|                                      | (20000 |     | 27000 | 3000    | 0   |     | ohms  |
|                                      | -60    |     | -60   | -6      | О   |     | volts |
| D-c Grid Voltagez                    | 8600   |     | 10000 | 1000    | О   |     | ohms  |
|                                      | 1000   |     | 1000  | 86      | С   |     | ohms  |
| Peak R-f Grid Voltage                | 90     |     | 90    | 9       | С   |     | volts |
| Internal Shield*                     | -      |     | -     | _       |     |     |       |
| D-c Plate Current                    | 45     |     | 45    | 5       | 5   |     | ma    |
| D-c Screen Current                   | 15     |     | 15    | 1       | 5   |     | ma    |
| D-c Grid Current (approx)            | 7      |     | 6     |         | 5   |     | ma    |
| Driving Power (approx)               | 0.7    |     | 0.5   | 0.      | 5   |     | watt  |
| Power Output (approx)                | 10     |     | 12    | 2       | 3   |     | watts |

ΔΔ Obtained from grid resistor (14000, 17000, 50000, 42000), by cathode resistor (1300, 1370, 1700, 1620) or from fixed supply.

Z Obtained by grid resistor (8600, 10000), by cathode resistor (1000, 860), or from fixed supply.

¶ Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

☆ From fixed supply or plate-voltage supply through resistor of value shown. Under key-up conditions, max screen voltage should not exceed 500 volts. Series screen resistor of value shown should not be used except where the 802 is employed as a buffer amplifier and is not keyed.

\* Connected to cathode at socket.

The GL-802 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 110 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                                            | 30  | 55 | 100 |
|------------------------------------------------------------------|-----|----|-----|
| Maximum Permissible Percentage<br>of Maximum Rated Plate Voltage |     |    |     |
| and Plate Input                                                  |     |    |     |
| Telephony, Class B                                               | 100 | 88 | 76  |
| Class C, Grid-Mod                                                | 100 | 88 | 76  |
| Class C, Sup'r-Mod                                               | 100 | 88 | 76  |
| Class C, Plate-Mod                                               | 100 | 77 | 55  |
| Telegraphy, Class C                                              | 100 | 77 | 55  |



If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



SCHENECTADY, N.Y.

4-44 (8M) Filing No. 8850

Supe Supersedes GET-760A



### **Transmitting Tube GL-803 - - Description and Rating**

The GL-803 is a pentode transmitting tube of the thoriated-tungsten filament type for use as an r-f amplifier, frequency multiplier, oscillator, and suppressor-, grid-, or plate-modulated amplifier. The tube has a maximum plate dissipation of 125 watts. The plate connection is brought out through a separate seal at the top of the bulb to maintain low grid-plate capacitance. Neutralization is unnecessary in adequately shielded circuits. The suppressor is connected to its individual base pin. The 803 may be operated at maximum ratings in all classes of service at frequencies as high as 20 megacycles.

### CHARACTERISTICS AND RATINGS

These data are for reference only. For design information see the specifications.

| Filament Voltage, a-c or d-c                   | 10.0           | Volts           |
|------------------------------------------------|----------------|-----------------|
| Filament Current                               | 5              | Amperes         |
| Transconductance, for plate current of 62.5 ma | 4000           | Micromhos       |
| Direct Interelectrode Capacitances:            |                |                 |
| Grid-plate, with external shielding            | 0.15 max       | κ μμf           |
| Input                                          | 17.5           | µµſ             |
| Output                                         | 29             | μμſ             |
| Cap                                            | Medium         | n Metal         |
| Base                                           | Hiant 5-pin Ce | eramic, Bayonet |
| Net Weight, approx                             |                | 10 Ounces       |
| Shipping Weight, approx                        |                | 3 Pounds        |
| Installation and Operation                     |                | GEH-1115        |

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AS R-F POWER AMPLIFIER PENTODE - CLASS B TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage                  | 1250 | 1500 | 2000 | 2000 | Volts        |
|------------------------------------|------|------|------|------|--------------|
| D-c Suppressor Voltage, grid No. 3 | 40   | 40   | 40   | 500  | Volts        |
| D-c Screen Voltage, grid No. 2     | 500  | 550  | 600  | 600  | Volts        |
| D-c Grid Voltage, grid No. 1*      | -30  | -35  | -40  |      | Volts        |
| Peak R-f Grid Voltage              | 90   | 70   | 55   |      | Volts        |
| D-c Plate Current                  | 130  | 110  | 80   | 160  | Milliamperes |
| Plate Input                        |      |      |      | 180  | Watts        |
| Suppressor Input                   |      |      |      | 10   | Watts        |
| Screen Input                       |      |      |      | 20   | Watts        |
| Plate Dissipation                  |      |      |      | 125  | Watts        |
| D-c Screen Current                 | 33   | 30   | 20   |      | Milliamperes |
| D-c Grid Current, approx           | 8    | 5    | 3    |      | Milliamperes |
| Driving Power, approxt             | 4.5  | 3    | 1.5  |      | Watts        |
| Power Output, approx               | 52   | 53   | 53   |      | Watts        |

AS SUPPRESSOR-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage                  | 1250 | 1500 | 2000 | 2000 | Volts        |
|------------------------------------|------|------|------|------|--------------|
| D-c Suppressor Voltage, grid No. 3 | -70  | -90  | -110 |      | Volts        |
| D-c Grid Voltage                   |      |      |      | -500 | Volts        |
| From a fixed supply of             | -110 | -100 | -100 |      | Volts        |
| From a grid resistor of            | 5000 | 5000 | 7000 |      | Ohms         |
| Peak R-f Grid Voltage              | 200  | 190  | 170  |      | Volts        |
| Peak A-f Suppressor Voltage        | 110  | 130  | 150  |      | Volts        |
| D-c Plate Current                  | 100  | 100  | 80   | 110  | Milliamperes |

| D-c Screen Current<br>D-c Grid Current, approx<br>Screen Resistor<br>Driving Power, approx<br>Power Output, approx<br>D-c Screen Voltage, grid No. 2<br>Plate Input<br>Screen Input<br>Plate Dissipation<br>AS GRID-MODULATED R-F POWER AMPLIFIER PI                                                                                                                                                                                                                                                                                                                                                   | 70<br>22<br>13000<br>4<br>40                                | 70<br>20<br>17000<br>3.5<br>50                                                                                               | 48<br>15<br>35000<br>2.5<br>53<br>C TELEPH                                                                                                      | 50<br>600<br>180<br>30<br>125<br>HONY                                                                 | Milliamperes<br>Milliamperes<br>Ohms<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts<br>Watts                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carrier conditions per tube for use with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a max                                                       | modulat                                                                                                                      | ion fact                                                                                                                                        | cor of 1.0                                                                                            | Volto                                                                                                                                                                                               |
| D-c Plate Voltage<br>D-c Suppressor Voltage, grid No. 3<br>D-c Screen Voltage, grid No. 2<br>D-c Grid Voltage, grid No. 1<br>Peak R-f Grid Voltage<br>Peak A-f Grid Voltage<br>D-c Plate Current<br>D-c Screen Current<br>D-c Grid Current, approx<br>Driving Power, approx†<br>Power Output, approx<br>Plate Input<br>Suppressor Input                                                                                                                                                                                                                                                                | 40<br>500<br>-100<br>160<br>75<br>130<br>30<br>8<br>4<br>52 | 40<br>550<br>-90<br>130<br>65<br>110<br>25<br>6<br>3<br>53                                                                   | 40<br>600<br>-80<br>100<br>50<br>80<br>20<br>4<br>2<br>53                                                                                       | 500<br>600<br>-500<br>160<br>180<br>10                                                                | Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Watts                                                                       |
| Screen Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                                                                                                                              |                                                                                                                                                 | 20                                                                                                    | Watts                                                                                                                                                                                               |
| AS PLATE-MODULATED R-F POWER AMPLIFIER<br>Carrier conditions per tube for use with<br>D-c Plate Voltage<br>D-c Suppressor Voltage, grid No. 3<br>D-c Screen Voltage, grid No. 2<br>D-c Grid Voltage, grid No. 1<br>From a fixed supply of<br>From a grid resistor of<br>Peak R-f Grid Voltage<br>D-c Plate Current<br>D-c Screen Current<br>D-c Grid Current, approx<br>Screen Resistor‡<br>Driving Power, approx<br>Power Output, approx<br>Plate Input<br>Suppressor Input<br>Screen Input<br>Plate Dissipation<br>AS PLATE-MODULATED R-F POWER AMPLIFIER<br>Carrier conditions per tube for use wit | PENTODE<br>h a max<br>TETRODE<br>h a max                    | - CLASS<br>modulat<br>1250<br>100<br>400<br>-80<br>4000<br>180<br>150<br>55<br>20<br>16000<br>4<br>125<br>- CLASS<br>modulat | C TELE<br>ion fac<br>1600<br>100<br>500<br>-80<br>4000<br>180<br>150<br>55<br>20<br>20000<br>4<br>155<br>3<br>5<br>5<br>20<br>20000<br>4<br>155 | PHONY<br>tor of 1.0<br>500<br>500<br>-500<br>160<br>50<br>250<br>10<br>20<br>85<br>PHONY<br>tor of 1. | Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Ohms<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Ohms<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts |
| Grids No. 2 and No. 5 connected togethe<br>D-c Plate Voltage<br>D-c Screen Voltage, grids No. 2 and 3<br>D-c Grid Voltage, grid No. 1<br>From a fixed supply of<br>From a grid resistor of                                                                                                                                                                                                                                                                                                                                                                                                             | r                                                           | 1250<br>130<br>-180<br>4000                                                                                                  | 1600<br>130<br>-180<br>4000                                                                                                                     | 1600<br>500<br>-500                                                                                   | Volts<br>Volts<br>Volts<br>Volts<br>Ohms                                                                                                                                                            |
| Peak R-f Grid Voltage<br>D-c Plate Current<br>D-c Screen Current<br>D-c Grid Current, approx<br>Screen Resistor§<br>Driving Power, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 205<br>150<br>75<br>45<br>15000<br>15                                                                                        | 520<br>150<br>75<br>45<br>20000<br>15                                                                                                           | 160<br>50                                                                                             | Milliamperes<br>Milliamperes<br>Milliamperes<br>Ohms<br>Watts                                                                                                                                       |

www.SteamPoweredRadio.Com

|                                                                                                                                    |                     |         |          |       | GL-803       |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|----------|-------|--------------|
| Power Output, approx                                                                                                               |                     | 125     | 155      |       | Watts        |
| Plate Input                                                                                                                        |                     | >       |          | 250   | Watts        |
| Screen Input                                                                                                                       |                     |         |          | 30    | Watts        |
| Plate Dissipation                                                                                                                  |                     |         |          | 85    | Watts        |
|                                                                                                                                    |                     |         |          |       |              |
| AS R-F POWER AMPLIFIER AND OSCILLATOR PER<br>Key-down conditions per tube without modu                                             | NTODE -<br>ulation( | CLASS ( | C TELEGH | RAPHY |              |
| D-c Plate Voltage                                                                                                                  | 1250                | 1500    | 2000     | 2000  | Volts        |
| D-c Suppressor Voltage, grid No. 3                                                                                                 | 40                  | 40      | 40       | 500   | Volts        |
| D-c Screen Voltage, grid No. 2                                                                                                     | 500                 | 500     | 500      | 600   | Volts        |
| D-c Grid Voltage, grid No. 1                                                                                                       |                     |         |          | -500  | Volts        |
| From a fixed supply of                                                                                                             | -90                 | -90     | -90      |       | Volts        |
| From a cathode resistor of                                                                                                         | 415                 | 415     | 415      |       | Ohms         |
| From a grid resistor of                                                                                                            | 7500                | 7500    | 7500     |       | Ohms         |
| Peak R-f Grid Voltage                                                                                                              | 175                 | 175     | 175      |       | Volts        |
| D-c Plate Current                                                                                                                  | 160                 | 160     | 160      | 175   | Milliamperes |
| D-c Screen Current                                                                                                                 | 45                  | 45      | 45       |       | Milliamperes |
| D-c Grid Current, approx                                                                                                           | 12                  | 12      | 12       | 50    | Milliamperes |
| Screen Resistor                                                                                                                    |                     | Not re  | ecommend | led   |              |
| Driving Power, approx                                                                                                              | 2                   | 2       | 2        |       | Watts        |
| Power Output, approx                                                                                                               | 130                 | 160     | 210      |       | Watts        |
| Plate Input                                                                                                                        |                     |         |          | 350   | Watts        |
| Suppressor Input                                                                                                                   |                     |         |          | 10    | Watts        |
| Screen Input                                                                                                                       |                     |         |          | 30    | Watts        |
| Plate Dissipation                                                                                                                  |                     |         |          | 125   | Watts        |
| AS R-F POWER AMPLIFIER AND OSCILLATOR TEL<br>Key-down conditions per tube without modu<br>Grids No. 2 and No. 3 connected together | IRODE -<br>ulation( | CLASS ( | C TELEGH | RAPHY |              |
|                                                                                                                                    | 1050                | 1500    |          | 0000  |              |
| D-c Plate Voltage                                                                                                                  | 1250                | 1500    | 2000     | 2000  | Volts        |
| D-c Screen Voltage, grids No. 2 and 3                                                                                              | 150                 | 150     | 150      | 600   | Volts        |
| D-c Grid Voltage, grid No. 1                                                                                                       |                     |         |          | -500  | Volts        |
| From a fixed supply of                                                                                                             | -90                 | -90     | -90      |       | Volts        |
| From a cathode resistor of                                                                                                         | 445                 | 445     | 445      |       | Ohms         |
| From a grid resistor of                                                                                                            | 2500                | 3500    | 3500     |       | Ohms         |
| Peak R-f Grid Voltage                                                                                                              | 190                 | 190     | 190      |       | Volts        |
| D-c Plate Current                                                                                                                  | 160                 | 160     | 160      | 175   | Milliamperes |
| D-c Screen Current                                                                                                                 | 15                  | 15      | 15       |       | Milliamperes |
| D-c Grid Current, approx                                                                                                           | 28                  | 27      | 26       | 50    | Milliamperes |
| Screen Resistor                                                                                                                    |                     | Not re  | ecommend | ied   |              |
| Driving Power, approx                                                                                                              | 4.6                 | 4.4     | 4.4      |       | Watts        |
| Power Output, approx                                                                                                               | 130                 | 160     | 210      | *     | Watts        |
| Plate Input                                                                                                                        |                     |         |          | 350   | Watts        |
| Screen Input                                                                                                                       |                     |         |          | 30    | Watts        |
| Plate Dissipation                                                                                                                  |                     |         |          | 125   | Watts        |

+ At crest of audio-frequency cycle with modulation factor of 1.0.

\* Grid voltages are given with respect to the midpoint of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be decreased by one-half the filament voltage and the circuit returns connected to the negative end of the filament.

+ Connected to modulated plate-voltage supply.

§ Connected to unmodulated plate-voltage supply.

Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions. The maximum ratings apply only at frequencies below 20 megacycles. For operation at higher frequencies adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| Frequency, Megacycles                                        | 20  | 40 | 60 |
|--------------------------------------------------------------|-----|----|----|
| Percentage of Maximum Rated Plate<br>Voltage and Plate Input |     |    |    |
| Class B, R-f                                                 | 100 | 86 | 80 |
| Class C, Grid- or Suppressor-mod.                            | 100 | 86 | 80 |
| Class C, Plate-mod.                                          | 100 | 77 | 60 |
| Class C, Telegraphy                                          | 100 | 77 | 60 |



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

10-43 (7M) Filing No. 8850

### GENERAL

### **Transmitting Tube GL-805 - - Description and Rating**

TECHNICAL INFORMATION

The 805 is a high-mu, three-electrode tube for use as an r-f amplifier, Class B modulator and oscillator. Valuable characteristics of this tube are high-power output at relatively low plate voltage and unusually low grid-bias requirements.

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

| Filament Voltage                    | 10.0              | Volts       |  |
|-------------------------------------|-------------------|-------------|--|
| Filament Current                    | 3.25              | Amperes     |  |
| Direct Interelectrode Capacitances: |                   |             |  |
| Grid-plate                          | 6.5               | μμſ         |  |
| Input                               | 8.5               | μμſ         |  |
| Output                              | 10.5              | μμſ         |  |
| Base or Terminal Description        | Jumbo 4-large Pir | 1           |  |
| Frequency for Maximum Ratings       | 30                | Megacycles  |  |
| Type of Cooling                     | Natural           | Ventilation |  |
| Net Weight (approx)                 | 8                 | Ounces      |  |
| Installation and Operation          | <b>GEH-</b> 980   |             |  |
|                                     |                   |             |  |

### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES):

| D-c Plate Voltage                | 125             | 50 150     | 0 1500      | Volts        |
|----------------------------------|-----------------|------------|-------------|--------------|
| Maximum Signal Plate Current (pe | er tube)*       |            | 210         | Milliamperes |
| D-c Maximum Signal Plate Input ( | per tube)*      |            | 315         | Watts        |
| Plate Dissipation (per tube)*    |                 |            | 125         | Watts        |
| D-c Grid Voltage                 |                 | -1         | 6           | Volts        |
| Peak A-f Grid Input Voltage      | 23              | 35 28      | 0           | Volts        |
| Zero Signal Plate Current        | 11              | 48 8       | 4           | Milliamperes |
| Maximum Signal Plate Current     | 40              | 40         | 0           | Milliamperes |
| Maximum Signal Plate Input*      | 50              | 00 60      | 0           | Watts        |
| Maximum Signal Driving Power (an | prox)           | 6          | 7           | Watts        |
| Effective Load (plate-to-plate)  | 670             | 00 820     | 0           | Ohms         |
| Maximum Signal Plate Power Outpu | at 30           | 0 37       | 0           | Watts        |
| Maximum Digital Flato Fonel Supp |                 |            |             |              |
| CLASS B R-F POWER AMPLIFIER      |                 |            |             |              |
| Contion conditions per tube for  | use with a max  | modulatio  | n factor of | 1.0          |
| Carrier conditions per tabe for  |                 |            |             |              |
| D-c Plate Voltage                | 125             | 50 150     | 0 1500      | Volts        |
| D-c Grid Voltage                 |                 | -1         | 0           | Volts        |
| D-c Plate Current                | 13              | 35 11      | 5 150       | Milliamperes |
| Plate Input                      |                 |            | 185         | Watts        |
| Plate Dissipation                |                 |            | 125         | Watts        |
| Peak R-f Grid Input Voltage      |                 | 75 7       | 0           | Volts        |
| D-c Grid Current (approx)        |                 | 15 1       | 5           | Milliamperes |
| Driving Power (approx) **        | 1               | 11 7.      | 5           | Watts        |
| Plate Power Output               | 1               | 55 57.     | 5           | Watts        |
|                                  |                 |            |             |              |
| CLASS C R-F POWER AMPLIFIER AND  | OSCILLATOR - PI | LATE MODUL | ATED        |              |
| Carrier conditions per tube for  | use with a max  | modulatio  | n factor of | 1.0          |
| Called Construction Pro-         | 2.04            | 10         |             |              |
| D-c Plate Voltage                | 100             | 125        | 0 1250      | Volts        |
| D-c Grid Voltage                 | -1              | -10        | -500        | Volts        |
| D-c Plate Current                | 16              | 50 16      | 0 175       | Milliamperes |
| D-c Grid Current (approx)        | 6               | 50 6       | 0 70        | Milliamperes |
| Plate Input                      |                 |            | 220         | Watts        |
| Plate Dissipation                |                 |            | 85          | Watts        |
| Peak R-f Grid Input Voltage (app | orox) 29        | 95 30      | 0           | Volts        |
| Driving Power (approx)           | 1               | 16 1       | 6           | Watts        |
| Plate Power Output               | 11              | 10 14      | 0           | Watts        |

### CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation;

| D-c Plate Voltage           | 1        | 1000 | 1250 | 1500 | 1500 | Volts        |
|-----------------------------|----------|------|------|------|------|--------------|
| D-c Grid Voltage            |          | -95  | -100 | -105 | -500 | Volts        |
| D-c Plate Current           |          | 200  | 200  | 200  | 210  | Milliamperes |
| D-c Grid Current (approx)   |          | 40   | 40   | 40   | 70   | Milliamperes |
| Plate Input                 |          |      |      |      | 315  | Watts        |
| Plate Dissipation           |          |      |      |      | 125  | Watts        |
| Peak R-f Grid Input Voltage | (approx) | 225  | 230  | 235  |      | Volts        |
| Driving Power (approx)      |          | 8.5  | 8.5  | 8.5  |      | Watts        |
| Plate Power Output          |          | 130  | 170  | 215  |      | Watts        |

\* Averaged over any audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

+ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-805 can be operated at maximum ratings in all classes of service at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under CHARACTERISTICS). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 80 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 30         | 45       | 80       | Мс                   |
|--------------------------------------------------------------------------------------|------------|----------|----------|----------------------|
| Maximum Permissible Percentage of<br>Maximum Rated Plate Voltage and<br>Plate Input: |            |          |          | -                    |
| Class B Telephony<br>Class C (Telephony, plate-modulated<br>(Telegraphy              | 100<br>100 | 90<br>82 | 77<br>55 | Per Cent<br>Per Cent |



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 11-41 (3M) Filing No. 8850 Supersedes GET-921

upersedes GET-921

# GENERAL B ELECTRIC

### Transmitting Tube GL-806--Description and Rating

The 806 is a three-electrode transmitting triode designed for use as a radiofrequency amplifier, oscillator, and Class B modulator. Maximum plate dissipation for Class C telegraph and Class B services is 225 watts (ICAS). The tantalum plate of this tube totally encloses the other electrodes and thus conserves power by eliminating loss from bulb bombardment and stray electrons. At 30 mc this construction provides the user with more than 75 watts of additional power per tube. The 806 may be operated at maximum ratings at frequencies as high as 100 mc. In Class B modulator service (ICAS), two 806's are capable of modulating 100 per cent an r-f amplifier having an input of 2240 watts. Plate and grid connections, brought out to the top and side of the bulb respectively, provide low-tube capacitances and high insulation.

### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

| Filament Voltage (a-c or d-c)       | 5.0 Volts   |
|-------------------------------------|-------------|
| Filament Current                    | 9.5 Amperes |
| Amplification Factor                | 12.6        |
| Direct Interelectrode Capacitances: |             |
| Grid-plate                          | 4.0 uuf     |
| Grid-filament                       | 5.5 uuf     |
| Plate-filament                      | 0.4 uuf     |
| Cooling                             | Air t       |
|                                     |             |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                                                                    | <u>0</u>                 | Typical<br>peratio       | n                                | Maxi<br>Rati              | mum<br>ngs                |                                                        |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------------|---------------------------|---------------------------|--------------------------------------------------------|
| CLASS B A-F POWER AMPLIFIER AND MODUL<br>Filament Voltage, a-c or d-c                                              | ATOR, TWO                | TUBES                    |                                  |                           | 5.0                       | Volts                                                  |
|                                                                                                                    | CC                       | S                        | ICAS                             | CCS                       | ICAS                      |                                                        |
| D-c Plate Voltage<br>Max Signal D-c Plate Current*<br>Max Signal Plate Input*                                      | 2000                     | 3000                     | 3300                             | 3000<br>200<br>500<br>150 | 3300<br>250<br>825<br>225 | Volts<br>Milliamperes<br>Watts<br>Watts                |
| D-c Grid Voltage<br>Peak A-f Grid-to-grid Voltage<br>Zero Signal D-c Plate Current<br>Max Signal D-c Plate Current | -140<br>660<br>80<br>390 | -230<br>770<br>50<br>330 | -240<br>930<br>80<br>475<br>4000 |                           |                           | Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Ohms |
| Effective Load Resistance,<br>Plate-to-plate                                                                       | 18000                    | 20800                    | 16000<br>35                      |                           |                           | Ohms<br>Watts                                          |

Typical Maximum Operation Ratings CLASS B R-F POWER AMPLIFIER - Telephony Carrier conditions per tube for use with a max modulation factor of 1.0 ICAS CCS ICAS CCS 3000 3300 Volts D-c Plate Voltage 2000 3000 3300 -280 Volts D-c Grid Voltage -150 -240 D-c Plate Current 110 70 102 150 150 Milliamperes Plate Input 225 338 Watts

225 Watts Plate Dissipation 150 Peak R-f Grid Voltage 180 200 290 Volts D-c Grid Current, approx ٦ 0 0 Milliamperes 8 Driving Power, approx <sup>O</sup> 5 10.3 Watts 70 Watts Power Output, approx 70 115

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage          | 2000  | 2500  | 3000  | 2500  | 3000  | Volts        |
|----------------------------|-------|-------|-------|-------|-------|--------------|
| D-c Grid Voltage‡          | -500  | -600  | -670  | -1000 | -1000 | Volts        |
|                            | 12500 | 15000 | 25000 | 1     |       | Ohms         |
| D-c Plate Current          | 195   | 195   | 195   | 200   | 200   | Milliamperes |
| D-c Grid Current, approx** | 40    | 40    | 27    | 50    | 50    | Milliamperes |
| Plate Input                |       |       |       | 500   | 600   | Watts        |
| Plate Dissipation          |       |       |       | 110   | 150   | Watts        |
| Peak R-f Grid Voltage      | 790   | 890   | 970   |       |       | Volts        |
| Driving Power, approx**    | 28    | 32    | 24    |       |       | Watts        |
| Power Output, approx       | 300   | 390   | 460   |       |       | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - Telegraphy Key down conditions per tube without modulation $\pi$ 

| D-c Plate Voltage           | 2000  | 2500  | 3000  | 3300  | 3000  | 3300  | Volts        |
|-----------------------------|-------|-------|-------|-------|-------|-------|--------------|
| D-c Grid Voltage§           | -400  | -500  | -600  | -600  | -1000 | -1000 | Volts        |
|                             | 16000 | 20000 | 24000 | 15000 |       |       | Ohms         |
|                             | 1800  | 2300  | 2700  | 1730  |       |       | Ohms         |
| D-c Plate Current           | 195   | 195   | 195   | 300   | 200   | 305   | Milliamperes |
| D-c Grid Current, approx ** | 25    | 25    | 25    | 40    | 50    | 50    | Milliamperes |
| Plate Input                 |       |       |       |       | 600   | 1000  | Watts        |
| Plate Dissipation           |       |       |       |       | 150   | 225   | Watts        |
| Peak R-f Grid Voltage       | 640   | 755   | 870   | 930   |       |       | Volts        |
| Driving Power, approx **    | 15    | 17    | 20    | 34    |       |       | Watts        |
| Power Output, approx        | 280   | 370   | 450   | 780   |       |       | Watts        |

\* Averaged over any audio-frequency cycle.

- + Forced ventilation from fan directed at middle and upper portions of bulb is required for continuous key-down conditions in Class C telegraph service and is recommended for other services at frequencies of 30 mc or higher.
- \*\* Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power.
- + Obtained by grid resistor of value shown or by partial self-bias methods.
- § Obtained by grid resistor (16000, 20000, 24000, 12800), by cathode resistor (1800, 2300, 2700, 1730) or from fixed-bias source.
- $\pi$  Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

<sup>0</sup> At crest of a-f cycle with modulation factor of 1.0.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

### APPLICATION NOTES

The GL-806 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulbs at these frequencies.

| Frequency                                     | 30  | 50 | 100 |
|-----------------------------------------------|-----|----|-----|
| Max Permissible Percentage                    |     |    |     |
| of Max Rated Plate Voltage                    |     |    |     |
| and Plate Input                               |     |    |     |
| Class B, Class C Grid or suppressor modulated | 100 | 90 | 78  |
| Class C, plate modulated                      | 100 | 80 | 50  |
| Class C. plate modulated, telegraphy          | 100 | 80 | 50  |





+60

PLATE VOLTS

600

400

200

+24

=+120

1000

800

www.SteamPoweredRadio.Com



| TUBE | MOUNTING | POSITION |
|------|----------|----------|
|------|----------|----------|

Vertical: Base down Horizontal: No.



Outline Transmitting Tube GL-806

Tube Symbol and Top View of Socket Connections

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

6-44 (8M) Filing No. 8850

www.SteamPoweredRadio.Com

Supersedes GET-757

# ELECTRONICS DEPARTMENT

### **Transmitting Tube GL-807 - - Description and Rating**

Description

The 807 is a beam power transmitting tube of the heater-cathode type having a maximum plate dissipation rating of 30 watts (ICAS). The high power sensitivity of this tube makes it especially useful in frequency-multiplier service where high harmonic output is essential. The 807 may also be used as a crystal oscillator and buffer amplifier in medium-power transmitters using up to a half-kilowatt input. Neutralization is generally unnecessary in adequately shielded circuits.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

ELECTRICAL

| Number of Electrodes                    | 4    |           |
|-----------------------------------------|------|-----------|
| Filament Voltage¶                       | 6.3  | Volts     |
| Filament Current                        | 0.9  | Ampere    |
| Grid-plate Transconductance, Ib = 72 ma | 6000 | Micromhos |
| Grid-screen Amplification Factor        | 8    |           |
| Direct Interelectrode Capacitance       |      |           |
| Grid-plate, with external shielding     | 0.2  | µµf       |
| Input                                   | 11   | µµſ       |
| Output                                  | 7    | ццг       |
| MECHANICAL                              |      |           |

| Base Description           | Medium 5. | -pin   |
|----------------------------|-----------|--------|
| Net Weight, approx         | 3         | Ounces |
| Shipping Weight, approx    | 3         | Pounds |
| Installation and Operation | GEH-1112  |        |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                            | Typical<br>Operation |      |      | Maximum*<br>Ratings |     |            |       |
|--------------------------------------------|----------------------|------|------|---------------------|-----|------------|-------|
| CLASS AB2 A-F POWER AMPLIFIER (TWO TUBES)  |                      |      |      |                     |     |            |       |
| Filament Voltage                           |                      |      |      | 6.3                 |     |            | Volts |
|                                            |                      | CCS  |      | ICAS                | CCS | ICAS       |       |
| D-c Plate Voltage                          | 400                  | 500  | 600  | 750                 | 600 | 750        | Volts |
| Max Signal Plate Current (per tube)†       |                      |      |      | A 1 1               | 120 | 120        | Ma    |
| D-c Max Signal Plate Input (per tube)†     |                      |      |      |                     | 60  | <b>v90</b> | Watts |
| Plate Dissipation (per tube)†              |                      |      |      |                     | 25  | 30         | Watts |
| D-c Grid Voltage                           | -25                  | -25  | -30  | -32                 |     |            | Volts |
| Positive D-c Grid Voltage                  | 300                  | 300  | 300  | 300                 | 300 | 300        | Volts |
| Peak A-f Grid Input Voltage (grid to grid) | 78                   | 78   | 78   | 92                  |     |            | Volts |
| Zero Signal Plate Current                  | 100                  | 100  | 60   | 60                  |     |            | Ma    |
| Max Signal Plate Current                   | 240                  | 240  | 200  | 240                 |     |            | Ma    |
| Max Signal Screen Grid Current             | 10                   | 10   | 10   | 10                  |     |            | Ma    |
| Screen Grid Inputt                         |                      |      |      |                     | 3.5 | 3.5        | Watts |
| Peak Grid Input Power‡                     | 0.35                 | 0.6  | 0.4  | 0.5                 |     |            | Watts |
| Load Resistance (per tube)                 | 800                  | 1060 | 1600 | 1740                |     |            | Ohms  |
| Effective Load (plate to plate)            | 3200                 | 4240 | 6400 | 6960                |     |            | Ohms  |
| Max Signal Plate Power Output§             | 55                   | 75   | 80   | 120                 |     |            | Watts |

|                                            |         | Typical |         | Maximum* |        |      |       |
|--------------------------------------------|---------|---------|---------|----------|--------|------|-------|
|                                            |         | Opera   | tion    |          | Rati   | ngs  |       |
|                                            |         |         |         |          |        |      |       |
| CLASS B R-F POWER AMPLIFIER                |         |         | ton fo  |          | e 1 01 |      |       |
| (Carrier conditions per tube for use with  | a max n | odurac  | 100 18  | ctor o   | 1 1.0) |      |       |
| Filament Voltage                           |         |         |         | 6.3      |        |      | Volts |
|                                            |         | CCS     |         | ICAS     | CCS    | ICAS |       |
| D-c Plate Voltage                          | 400     | 500     | 600     | 750      | 600    | 750  | Volts |
| D-c Grid Voltage                           | -25     | -25     | -25     | -35      |        |      | Volts |
| De Sameen Grid Voltage                     | 250     | 250     | 250     | 300      | 300    | 300  | Volts |
| D-c Screen driu vortage                    | 0       |         | 0       | 0        |        |      | Ma    |
|                                            | 75      | 75      | 62.5    | 60       | 80     | 90   | Ma    |
| D-c Plate Current                          | 1       | 1       | 3       | 3        |        |      | Ma    |
| D-c Screen Grid Current                    | -       | т       | -       | -        | 37.5   | 45   | Watts |
| Plate Input                                |         |         |         |          | 25     | 2.5  | Wette |
| Screen Grid Input                          |         |         |         |          | 2.0    | 30   | Watta |
| Plate Dissipation                          | -       |         | -       | 07       | 65     | )0   | Walta |
| Peak R-f Grid Input Voltage                | 20      | 20      | 20      | 21       |        |      | Volta |
| Driving Power(), approx                    | 0.25    | 0.25    | 0.2     | 0.12     |        |      | Watts |
| Plate Power Output                         | 9       | 12.5    | 12.5    | 15       |        |      | Watts |
|                                            | Sec.16  |         |         |          |        |      |       |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR | - PLAT  | TE MODU | LATED   |          |        |      |       |
| (Carrier conditions per tube for use with  | a max n | nodulat | tion fa | actor o  | f 1.0) |      |       |
| Bilement Voltage                           |         |         |         | 6.3      |        |      | Volts |
| Fliament voltage                           |         | CCS     |         | TCAS     | CCS    | TCAS |       |
| D . Dista Valtage                          | 325     | 400     | 475     | 600      | 475    | 600  | Volts |
| D-c Plate Voltage                          | 75      | 80      | -85     | -00      | -200   | -200 | Volta |
| D-c Grid Voltage                           | -15     | 22200   | 21 300  | 22500    | -200   | -200 | Ohme  |
| From a grid resistor of                    | 25000   | 22000   | 21900   | 22500    | 300    | 300  | Volta |
| D-c Screen Voltage                         | 225     | 225     | 665     | 615      | 900    | 900  | Ohma  |
| From a series resistor of $\Delta$         | 20000   | 20000   | 50000   | 50000    | 07     | 100  | Ma    |
| D-c Plate Current                          | 80      | 50      | 63      | 100      | 02     | 100  | Ma    |
| D-c Grid Current, approx                   | 3       | 3.5     | 4       | 4        | 5      | 5    | Ma    |
| D-c Screen Grid Current                    | 5       | 5.75    | 5       | 6.5      |        | 60   | Ma    |
| Plate Input                                |         |         |         |          | 40     | 60   | Watts |
| Screen Grid Input                          |         |         |         |          | 2.5    | 2.5  | Watts |
| Plate Dissipation                          |         |         |         |          | 16.5   | 25   | Watts |
| Peak R-f Grid Input Voltage, approx        | 90      | 95      | 110     | 115      |        |      | Volts |
| Driving Power, approx                      | 0.25    | 0.3     | 0.4     | 0.4      |        |      | Watts |
| Plate Power Output                         | 17.5    | 22.5    | 27.5    | 42.5     |        |      | Watts |
|                                            |         |         |         |          |        |      |       |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR | 2       |         |         |          |        |      |       |
| (Key down conditions per tube without modu | lation  | )+      |         |          |        |      |       |
|                                            |         |         |         | 67       |        |      | Volte |
| Filament Voltage                           |         |         |         | 0.)      | 000    | TOAR | VOLUS |
|                                            |         | CCS     | 600     | ICAS     | COS    | ICAS | Nalta |
| D-c Plate Voltage                          | 400     | 500     | 600     | 150      | 600    | 150  | VOILS |
| D-c Grid Voltage                           |         | 1.11    | 1       | 1.1.1    | -200   | -200 | VOLTS |
| From a fixed supply of                     | -45     | -45     | -45     | -45      |        |      | Volts |
| From a cathode resistor of                 | 410     | 410     | 410     | 410      | e in   |      | Ohms  |
| From a grid resistor of                    | 12800   | 12800   | 12800   | 12800    |        |      | Ohms  |
| D-c Screen Grid Voltage                    |         |         |         |          | 300    | 300  | Volts |
| From a fixed supply of                     | 250     | 250     | 250     | 250      |        |      | Volts |
| From a series resistor of                  | 20000   | 42000   | 50000   | 85000    |        |      | Ohms  |
| D-c Plate Current                          | 100     | 100     | 100     | 100      | 100    | 100  | Ma    |
| D-c Grid Current, approx                   | 3.5     | 3.5     | 3.5     | 3.5      | 5      | 5    | Ma    |
| Des Sangen Grid Cunnent                    | 7.5     | 6       | 7       | 6        |        |      | Ma    |
| Plate Taput                                |         |         |         | 1210     | 60     | 75   | Watts |
| Plate Dissinction                          |         |         |         |          | 25     | 30   | Watts |
| Prate Dissipation                          |         |         |         |          | 3.5    | 3.5  | Watts |
| Screen Grid Input                          | 65      | 65      | 65      | 65       |        | 1.5  | Volta |
| reak n-I Grid input voltage, approx        | 0.0     | 0.2     | 0.2     | 0.2      |        |      | Watts |
| Driving Power, approx                      | 0.2     | 30      | 10      | 50       |        |      | Watta |
| Plate Power Output                         | 25      | 50      | 40      | 50       |        |      |       |
- t Averaged over any audio-frequency cycle of sine-wave form.
- + Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
- Subscript (2) indicates that grid current flows during some part of input cycle.
- T Heater voltage fluctuations should not exceed +10 or -5 per cent from the rated value.
- Driver stage should be capable of supplying the grids of the Class AB<sub>2</sub> stage with the specified peak values at low distortion. The effective resistance per grid circuit of the Class AB<sub>2</sub> stage should be kept below 500 ohms and the effective impedance of the highest desired response frequency should not exceed 700 ohms.
- § With zero-impedance driver and perfect regulation, plate circuit distortion does not exceed 2 per cent. In practice, plate-voltage regulation, positive grid voltage regulation, and grid bias regulation should not be greater than 5 per cent, 5 per cent, and 3 per cent, respectively.
- ◊ At crest of a-f cycle with modulation factor of 1.0.
- △ Connected to modulated plate-voltage supply.

#### APPLICATION NOTES

\* The GL-807 can be operated at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 125 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles         | 60  | 80 | 125 |
|-------------------------------|-----|----|-----|
| Max Permissible Percentage of |     |    |     |
|                               | 100 | 90 | 75  |
| plate-modulated               | 100 | 80 | 55  |
| Class C,                      | 100 | 80 | 55  |
| telegraphy                    |     |    |     |



Bottom view of base



P =Plate G2=Screen G1=Grid K =Cathode H =Heater PBF = Beam-forming plates



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com Supersedes GET-756()

#### **ELECTRONICS DEPARTMENT**

## GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-809 - - Description and Rating

#### Description

The 809 is a high-mu transmitting triode with a typical power output of 75 watts (ICAS) for Class C telegraph service. Because of its high perveance, the tube can be operated at high plate efficiency and low driving power. Grid bias requirements are extremely low for Class B A-f service.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Number of Electrodes               | 3   |         |
|------------------------------------|-----|---------|
| Filament Voltage                   | 6.3 | Volts   |
| Filament Current                   | 2.5 | Amperes |
| Amplification Factor               | 50  |         |
| Direct Interelectrode Capacitances |     |         |
| Grid-plate                         | 6.7 | ннt     |
| Grid-cathode                       | 5.7 | ннt     |
| Plate-cathode                      | 0.9 | μμſ     |
|                                    |     |         |

MECHANICAL

| Base Description           | Medium 4-pin Ceramic |       |
|----------------------------|----------------------|-------|
| Net Weight, approx         | 3 01                 | unces |
| Shipping Weight, approx    | 3 Pc                 | ounds |
| Installation and Operation | GEH-1114             |       |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                                                                                                                                                                                                                                                                                                                                    | Typics<br>Operati                                                                                             | Max                                                                           | imum*<br>ings                 |                                  |                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                               |                               |                                  |                                                                                               |
| Filament Voltage                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | 6.3                                                                           |                               |                                  | Volts                                                                                         |
| D-c Plate Voltage<br>Max Signal Plate Current, per tube‡<br>D-c Max Signal Plate Input, per tube‡<br>Plate Dissipation, per tube‡<br>D-c Grid Voltage§<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current<br>Max Signal Plate Current<br>Load Resistance, per tube<br>Max Signal Driving Power, approx<br>Effective Load, plate to plate<br>Max Signal Plate Power Output | <u>CCS</u><br>500 750<br>0 -4.5<br>135 140<br>40 40<br>200 200<br>1300 2100<br>2.4 2.4<br>5200 8400<br>60 100 | <u>ICAS</u><br>1000<br>-10<br>156<br>40<br>200<br>2900<br>3.4<br>11600<br>145 | 008<br>750<br>100<br>75<br>25 | ICAS<br>1000<br>100<br>100<br>30 | Volts<br>Ma<br>Watts<br>Watts<br>Volts<br>Volts<br>Ma<br>Ma<br>Ohms<br>Watts<br>Ohms<br>Watts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLAT<br>(Carrier conditions per tube for use with                                                                                                                                                                                                                                                                                              | OR - PLATE                                                                                                    | MODULATED                                                                     | tor of :                      | 1.0)                             |                                                                                               |
| Filament Voltage<br>D-c Plate Voltage                                                                                                                                                                                                                                                                                                                                              | 500 600                                                                                                       | 6.3<br>750                                                                    | 600                           | 750                              | Volts<br>Volts                                                                                |

| oltage         | 500                                                           | 600                                                           | 750                                                                                               | 600                                                                                                                  | 750                                                                                                                                                                                | Volt                                                                                                                                                                                                                    |
|----------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ltage          | -60                                                           | -60                                                           | -60                                                                                               | -200                                                                                                                 | -200                                                                                                                                                                               | Volts                                                                                                                                                                                                                   |
| ld Resistor of | 2000                                                          | 2000                                                          | 2000                                                                                              |                                                                                                                      |                                                                                                                                                                                    | Ohms                                                                                                                                                                                                                    |
| irrent         | 83                                                            | 83                                                            | 100                                                                                               | 83                                                                                                                   | 100                                                                                                                                                                                | Ma                                                                                                                                                                                                                      |
| crent, approx◊ | 32                                                            | 32                                                            | 32                                                                                                | 35                                                                                                                   | 35                                                                                                                                                                                 | Ma                                                                                                                                                                                                                      |
|                | oltage<br>ltage<br>id Resistor of<br>urrent<br>rrent, approx◊ | 501tage5001tage-601d Resistor of2000urrent83rrent, approx(>32 | 501tage 500 600   1tage -60 -60   1d Resistor of 2000 2000   urrent 83 83   rrent, approx() 32 32 | 501tage 500 600 750   1tage -60 -60 -60   id Resistor of 2000 2000 2000   urrent 83 83 100   rrent, approx◊ 32 32 32 | 501tage   500   600   750   600     1tage   -60   -60   -60   -200     id Resistor of   2000   2000   2000     urrent   83   83   100   83     rrent, approx()   32   32   32   35 | 501tage   500   600   750   600   750     1tage   -60   -60   -60   -200   -200     1d Resistor of   2000   2000   2000   -200   -200     urrent   83   83   100   83   100     rrent, approx◊   32   32   32   35   35 |

#### CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE MODULATED (CONT'D) (Carrier conditions per tube for use with a max modulation factor of 1.0)

|                                                                                                                    | Typical<br>Operation      |                           | Maximum*<br>Ratings               |                  |                   |                                         |
|--------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------------|------------------|-------------------|-----------------------------------------|
| Plate Input<br>Plate Dissipation                                                                                   | <u>cc</u>                 | 5                         | ICAS                              | <u>ccs</u><br>50 | <u>ICAS</u><br>75 | Watts                                   |
| Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output                                 | 135<br>3.2<br>30          | 135<br>3.2<br>38          | 150<br>4.3<br>55                  | 11.9             | - )               | Volts<br>Watts<br>Watts                 |
| CLASS C R-F POWER AMPLIFIER AND OSCILL<br>(Key down conditions per tube without me                                 | ATOR<br>odulati           | on)∆                      |                                   |                  |                   |                                         |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>From a Grid Resistor of<br>From a Cathode Resistor of | 500<br>-50<br>2500<br>420 | 750<br>-60<br>3000<br>500 | 6.3<br>1000<br>-75<br>3000<br>600 | 750<br>-200      | 1000<br>-200      | Volts<br>Volts<br>Volts<br>Ohms<br>Ohms |
| D a Plate Current                                                                                                  | 100                       | 100                       | 100                               | 100              | 100               | 1/-                                     |

| D-c Plate Current                   | 100 | 100 | 100 | 100 | 100 | Ma    |
|-------------------------------------|-----|-----|-----|-----|-----|-------|
| D-c Grid Current, approx            | 20  | 20  | 25  | 35  | 35  | Ma    |
| Plate Input                         |     |     |     | 75  | 100 | Watts |
| Plate Dissipation                   |     |     |     | 25  | 30  | Watts |
| Peak R-f Grid Input Voltage, approx | 135 | 140 | 160 |     |     | Volts |
| Driving Power, approx               | 2.5 | 2.5 | 3.8 |     |     | Watts |
| Plate Power Output                  | 35  | 55  | 75  |     |     | Watts |
|                                     |     |     |     |     |     |       |

<sup>‡</sup> Averaged over any audio-frequency cycle of sine-wave form.

- § Grid voltages are given with respect to the midpoint of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be reduced by one-half the filament voltage and the circuit returns made to the negative end of the filament.
- Subject to wide variations depending upon the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power.
- A Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

\* The GL-809 can be operated at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 120 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                         | 60  | 70 | 120 |
|-----------------------------------------------|-----|----|-----|
| Max Permissible Percentage of Max Rated Plate |     |    |     |
| Class B, R-f                                  | 100 | 93 | 75  |
| Class C, plate-modulated                      | 100 | 88 | 50  |
| telegraphy                                    | 100 | 88 | 50  |



Bottom View of Sockect Connections



AA'= Plane of electrodes

P=Plate G=Grid F=Filament NC=No connection



# GENERAL E ELECTRIC

### **Transmitting Tube GL-810--Description and Rating**

The GL-810 is a high-mu transmitting tube with a typical power output of 475 watts (ICAS) for Class C telegraph service. Because of its high perveance the tube can be operated at high plate efficiency with low driving power and relatively low plate voltage. The 810 heavy duty filament, shielded at each end, conserves input power by eliminating bulb bombardment and stray electrons. The plate and grid leads are brought out to terminals at the top and side of the bulb respectively - a design which provides very short internal leads, low internal lead inductance, and permits compact circuit layout for h-f installations.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| ELECTRICAL            |              |     |  |             |
|-----------------------|--------------|-----|--|-------------|
| Number of Electrodes  |              |     |  | 3           |
| Filament Voltage      |              |     |  | 10 volts    |
| Filament Current      |              |     |  | 4.5 amperes |
| Amplification Factor  |              |     |  | 36          |
| Direct Interelectrode | Capacitance, | μμĩ |  |             |
| Grid-plate            |              |     |  | 4.8         |
| Grid-cathode          |              |     |  | 8.7         |
| Plate-cathode         |              |     |  | 12          |
|                       |              |     |  |             |

MECHANICAL Base Description Net Weight, approx Shipping Weight, approx Installation and Operation

Jumbo 4-large Pin 8 ounces 1 pound GEH-1111

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                  | Typical |       |         | Maximum* |         |              |
|----------------------------------|---------|-------|---------|----------|---------|--------------|
|                                  |         | Oper  | ration  |          | Ratings |              |
| CLASS B A-F POWER AMPLIFIER (TWO | TUBES)  |       |         |          |         |              |
| Filament Voltage                 |         |       | ]       | LO       |         | volts        |
|                                  | CC      | S     | IC & AS | CCS      | IC & AS |              |
| D-c Plate Voltage                | 1500    | 2000  | 2250    | 2000     | 2250    | volts        |
| Max Signal Plate Current         |         |       |         |          |         |              |
| (per tube)†                      |         |       |         | 250      | 250     | milliamperes |
| D-c Max Signal Plate Input       |         |       |         |          |         |              |
| (per tube)†                      |         |       |         | 425      | 510     | watts        |
| Plate Dissipation (per tube)†    | 1       |       |         | 125      | 150     | watts        |
| D-c Grid Voltage                 | -30     | -50   | -60     |          |         | volts        |
| Peak A-f Grid Input Voltage      | 345     | 345   | 380     |          |         | volts        |
| Zero Signal Plate Current        | 80      | 60    | 70      |          |         | milliamperes |
| Max Signal Plate Current         | 500     | 420   | 450     |          |         | milliamperes |
| Max Signal Driving Power, approx | 12      | 10    | 13      |          |         | watts        |
| Effective Load (plate to plate)  | 6600 :  | 11000 | 11600   |          |         | ohms         |
| Max Signal Plate Power Output    | 510     | 590   | 725     |          |         | waits        |

|                                                       |                  | Ty<br>Ope | pical<br>ration |          | Maximum<br>Ratings | *              |  |
|-------------------------------------------------------|------------------|-----------|-----------------|----------|--------------------|----------------|--|
| CLASS B R-F POWER AMPLIFIER                           |                  |           |                 |          |                    |                |  |
| (Carrier conditions per tube                          | for use wi       | th a      | max mod         | lulation | factor             | of 1.0)        |  |
| Filament Voltage                                      |                  |           |                 | 10       |                    | volts          |  |
|                                                       | C                | CS        | IC & A          | AS CCS   | IC & AS            |                |  |
| D-c Plate Voltage                                     | 1500             | 2000      | 2250            | 2000     | 2250               | volts          |  |
| D-c Grid Voltage                                      | -50              | -65       | -70             |          |                    | volts          |  |
| D-c Plate Current                                     | 115              | 93        | 100             | 185      | 185                | milliamperes   |  |
| Plate Input                                           |                  |           |                 | 185      | 225                | watts          |  |
| D-c Grid Current                                      | 2                | 2         | 2               |          |                    | milliamperes   |  |
| Plate Dissipation                                     |                  |           |                 | 125      | 150                | watts          |  |
| Peak R-f Grid Input Voltage                           | 110              | 100       | 100             |          |                    | volts          |  |
| Driving Power ‡, approx                               | 6                | 4         | 4               |          |                    | watts          |  |
| Plate Power Output                                    | 60               | 60        | 75              |          |                    | watts          |  |
| CLASS C R-F POWER AMPLIFIER                           | AND OSCILLA      | TOR -     | GRID N          |          | מי                 |                |  |
| (Carrier conditions per tube                          | for use wit      | tha       | max mod         | ulation  | factor             | of 1 0         |  |
| Filament Voltage                                      | 101 050 #1       |           |                 | 10       | lactor             | volta          |  |
| D-c Plate Voltage                                     | 1500             | 2000      | 2250            | 2000     | 2250               | volts          |  |
| D-c Grid Voltage                                      | -140             | -140      | -140            | -500     | -500               | volta          |  |
| D-c Plate Current                                     | 110              | 92        | 100             | 185      | 185                | milliamperes   |  |
| D-c Grid Current, approx                              | 2                | 2         | 2               | 10)      | 10)                | milliamperes   |  |
| Plate Input                                           | _                | -         |                 | 185      | 225                | watts          |  |
| Plate Dissipation                                     |                  |           |                 | 125      | 150                | watts          |  |
| Peak R-f Grid Input Voltage.                          | approx 175       | 160       | 180             | >        | -20                | volts          |  |
| Driving Power ‡, approx                               | 5                | 4         | 4               |          |                    | watts          |  |
| Plate Power Output                                    | 60               | 60        | 75              |          |                    | watts          |  |
|                                                       |                  |           | DT ACT          | MODUT A  |                    |                |  |
| CLASS C R-F POWER AMPLIFIER                           | AND USCILLA      | FOR -     | PLATE           | MODULAT  | ED                 |                |  |
| Carrier conditions per tube                           | for use with     | thai      | nax moo         | lulation | ractor             | of 1.0)        |  |
| Plate Voltage                                         | 1250             | 1600      | 1800            | 1600     | 1900               | VOLUS          |  |
| D-c Grid Voltage                                      | 1250             | 200       | 200             | 1000     | 1000<br>E00        | volts          |  |
| D-c drid vortage #                                    | -200             | -200      | 200             | -500     | -500               | VOLUS          |  |
| D-c Plate Current                                     | 210              | 210       | 250             | 210      | 250                | milliamperes   |  |
| D-c Grid Current approx                               | 50               | 50        | 50              | 70       | 70                 | milliampores   |  |
| Plate Input                                           | 50               | 20        | . 00            | 335      | 450                | militiamperes  |  |
| Plate Dissipation                                     |                  |           |                 | 85       | 125                | watts          |  |
| Peak R-f Grid Input Voltage.                          | approx 370       | 370       | 370             |          | 16)                | volts          |  |
| Driving Power, approx                                 | 17               | 17        | 17              |          |                    | watts          |  |
| Plate Power Output                                    | 180              | 250       | 335             |          |                    | watts          |  |
|                                                       |                  |           | 111             | *        |                    |                |  |
| CLASS C R-F POWER AMPLIFIER .                         | AND OSCILLA      | POR       | 10              |          |                    |                |  |
| (Key down conditions per tub                          | e without mo     | dula      | tion)§          |          |                    |                |  |
| Plate Voltage                                         | 1500             | 2000      | 0050            | 10       | 0050               | VOLTS          |  |
| D-c Plate voltage                                     | 1500             | 2000      | 2250            | 2000     | 2250               | volts          |  |
| D-c Grid Voltage "                                    | -120             | -100      | -160            | -500     | -500               | volts          |  |
|                                                       | 2000             | 4000      | 4000            |          |                    | onins          |  |
| D-c Plate Cunnent                                     | 415              | 250       | 275             | 250      | 275                |                |  |
| Dec Grid Current                                      | 250              | 250       | 215             | 250      | 410                | milliomperes   |  |
| Plate Innut                                           | 40               | 40        | 40              | 500      | 620                | militizamperes |  |
| Plate Dissingtion                                     |                  |           |                 | 1 25     | 150                | watte          |  |
| TOO PIPOTAGION                                        | 11 St. 11 St. 11 |           |                 | 160      | T JU               | waluus         |  |
| Peak R-f Grid Input Voltage                           | approx 280       | 330       | 330             |          |                    | vol ta         |  |
| Peak R-f Grid Input Voltage,<br>Driving Power, approx | approx 280       | 330       | 330             |          |                    | volts          |  |

- t Averaged over any audio-frequency cycle
- ‡ At crest of audio-frequency cycle
- ¶ Obtained by grid-resistor of value shown or by partial self-bias methods
- § Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions
- π Obtained from fixed supply, by grid resistor (3000, 4000), or by cathode resistor (415, 550, 510)

APPLICATION NOTES

\* The GL-810 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                   | 30  | 60 | 100 |
|-----------------------------------------|-----|----|-----|
| Max Permissible Percentage of Max Rated |     |    |     |
| Plate Voltage and Plate Input           |     |    |     |
| Class B                                 | 100 | 88 | 80  |
| Class C, Grid-modulated                 | 100 | 88 | 80  |
| Plate-modulated                         | 100 | 70 | 50  |
| Telegraphy                              | 100 | 70 | 50  |
|                                         |     |    |     |



Top View of Socket Connections



Tube Mounting Position Vertical - Base Down Horizontal - Plane of Electrodes Vertical





GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

7-44 (8M) Filing No. 8850

Supersedes GET-755

#### www.SteamPoweredRadio.Com



### **Transmitting Tube GL-811 - - Description and Rating**

The \$ll is a high mµ transmitting triode designed for Class B modulator service. In this service, two tubes are capable of modulating 100 per cent an r-f amplifier operating with 450 watts input; no grid bias is required at plate voltages up to 1250 volts. The \$ll is also an excellent radio-frequency amplifier and frequency doubler. The tube may be operated at maximum ratings in r-f services at frequencies as high as 60 mc and at reduced ratings as high as 100 mc. Because of its high perveance, it can be operated at high plate efficiency and low driving power. For example, two tubes in Class B a-f service may be used with a plate input of 300 watts (ICAS) and with only 4.2 watts of driving power.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| ELECTRICAL                             |                                |
|----------------------------------------|--------------------------------|
| Number of Electrodes                   | 3                              |
| Filament Voltage                       | 6.3 volts                      |
| Filament Current                       | 4 amperes                      |
| Amplification Factor                   | 160                            |
| Direct Interelectrode Capacitance, µµf |                                |
| Grid-plate                             | 5.5                            |
| Grid-cathode                           | 5.5                            |
| Plate-cathode                          | 0.6                            |
|                                        |                                |
| MECHANICAL                             |                                |
| Base Description                       | Medium 4-pin Micanol‡, Bayonet |
| Net Weight, approx                     | 4 ounces                       |
| Shipping Weight, approx                | 3 pounds                       |
| Installation and Operation             | GEH-1110                       |

# Registered Trademark.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|      |                                                              |      | Typ<br>Oper | oical<br>Pation | Max<br>Rat | imum*<br>ings |              |
|------|--------------------------------------------------------------|------|-------------|-----------------|------------|---------------|--------------|
|      | CLASS B A-F POWER AMPLIFIER (TWO TUBE<br>Filament Voltage    | S)   | CCS         | IC & AS         | 5.3<br>CCS | IC & AS       | volts        |
|      | D-c Plate Voltage                                            |      | 1250        | 1500            | 1250       | 1500          | volts        |
|      | Max Signal Plate Current (per tube)†                         |      | -           |                 | 125        | 125           | milliamperes |
|      | D-c Max Signal Plate Input (per tube)                        | +    |             |                 | 125        | 150           | watts        |
|      | Plate Dissipation (per tube)†                                |      |             |                 | 40         | 50            | watts        |
|      | D-c Grid Voltage#                                            |      | 0           | 0               |            |               | volts        |
|      | Peak A-f Grid Input Voltage                                  |      | 140         | 160             |            |               | volts        |
|      | Zero Signal Plate Current                                    |      | 48          | 20              |            |               | milliamperes |
|      | Max Signal Plate Current                                     |      | 200         | 200             |            |               | milliamperes |
|      | Load Resistance (per tube)                                   |      | 3750        | 4500            |            |               | ohms         |
|      | Max Signal Driving Power, approx                             |      | 3.8         | 4.2             |            |               | watts        |
|      | Effective Load (plate to plate)                              |      | 15000       | 18000           |            |               | ohms         |
|      | Max Signal Plate Power Output                                |      | 175         | 225             |            |               | watts        |
|      |                                                              |      |             |                 |            |               |              |
|      | CLASS B R-F POWER AMPLIFIER                                  |      |             |                 |            |               |              |
|      | (Carrier conditions per tube for use                         | with | a max       | modulation      | n factor   | of 1.0        | )            |
|      | Filament Voltage                                             |      |             | 6               | 5.3        |               | volts        |
|      | D-c Plate Voltage                                            |      | 1250        | 1500            | 1250       | 1500          | volts        |
| If Y | 'ou Didn't Get This From My Site,<br>Then It Was Stolen From |      |             |                 |            |               |              |

www.SteamPoweredRadio.Com

|                                         | Tyr<br>Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation     | Mar<br>Rat | kimum<br>tings |              |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------|--------------|
|                                         | CCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IC & AS   | CCS        | IC & AS        |              |
| D-c Grid Voltage#                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6        |            |                | volts        |
| D-c Plate Current                       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50        | 60         | 60             | milliamperes |
| Plate Input                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 60         | 75             | watts        |
| D-c Grid Current**                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6         |            |                | milliamperes |
| Plate Dissipation                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 40         | 50             | watts        |
| Peak R-f Grid Input Voltage             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35        |            | -              | volts        |
| Driving Power, approx** $\pi$           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5       |            |                | watts        |
| Plate Power Output                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25        |            |                | watts        |
| CLASS C R-F POWER AMPLIFIER AND OSCILLA | ATOR - PLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TE MODULA | TED        |                |              |
| (Carrier conditions per tube for use wi | th a max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | modulatio | n factor   | of 1.0         | )            |
| Filament Voltage                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 6.3        |                | volts        |
| D-c Plate Voltage                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1250      | 1000       | 1250           | volts        |
| D-c Grid Voltage∆                       | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -125      | -200       | -200           | volts        |
| From a Grid Resistor of                 | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2500      |            |                | ohms         |
| D-c Plate Current                       | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125       | 105        | 125            | milliamperes |
| D-c Grid Current, approx**              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50        | 50         | 50             | milliamperes |
| Plate Input                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 105        | 155            | watts        |
| Plate Dissipation                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 27         | 40             | watts        |
| Peak R-f Grid Input Voltage, approx     | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230       |            |                | volts        |
| Driving Power, approx**                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11        |            |                | watts        |
| Plate Power Output                      | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120       |            |                | watts        |
| CLASS C R-F POWER AMPLIFIER AND OSCILLA | TOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |            |                |              |
| (Key down conditions per tube without m | odulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .)§       |            |                |              |
| Filament Voltage                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·         | 6.3        |                | volts        |
| D-c Plate Voltage                       | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1500      | 1250       | 1500           | volts        |
| D-c Grid Voltage◊                       | The second s |           | -200       | -200           | volts        |
| From a Fixed Supply of                  | -87.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -113      |            |                | volts        |
| From a Grid Resistor of                 | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3200      |            |                | ohms         |
| From a Cathode Resistor of              | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 610       |            |                | ohms         |
| D-c Plate Current                       | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150       | 125        | 150            | milliamperes |
| D-c Grid Current **                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35        | 50         | 50             | milliamperes |
| Plate Input                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 155        | 225            | watts        |
| Plate Dissipation                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 40         | 55             | watts        |
| Peak R-f Grid Input Voltage, approx     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225       |            |                | volts        |
| Driving Power, approx **                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8         |            |                | watts        |

† Averaged over any audio-frequency cycle.

# Grid voltages are given for either a-c or d-c filament operation. When a.c is used the circuit returns are made to the midpoint of the filament circuit. When d.c. is used, the returns are made to the negative filament terminal.

115

170

watts

- \*\* Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low impedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power.
- § Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- △ Obtained preferably from grid leak of value shown, or combination of grid leak with either fixed supply or suitably by-passed cathode resistor.
- ♦ Obtained from fixed supply or grid resistor (2500, 3200) or by cathode resistor (550, 610).
- $\pi$  At crest of audio-frequency cycle with modulation factor of 1.0.

Plate Power Output

#### APPLICATION NOTES

\* The GL-811 can be operated at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles<br>Max Permissible Percentage of Max Rated | 60         | 80       | 100      |
|------------------------------------------------------------------|------------|----------|----------|
| Plate Voltage and Plate Input<br>Class B                         | 100        | 90       | 83       |
| Class C<br>Plate-modulated<br>Telegraphy                         | 100<br>100 | 75<br>75 | 60<br>60 |

## Top View of Socket Connections









1-42 (4M) Filing No. 8850 Supersedes GET-754

www.SteamPoweredRadio.Com

**ELECTRONICS DEPARTMENT** 

## GENERAL 🍘 ELECTRIC

## Transmitting Tube GL-812 - - Description and Rating

The 812 is a transmitting triode with a maximum plate dissipation of 55 watts for Class C telegraph service. Because of its high perveance, the tube can be operated at high plate efficiency and low driving power. In Class B modulator service, two 812's are capable of modulating 100 per cent an r-f amplifier having an input of 450 watts.

Other features of the 812 include its use of a Zirconium-coated plate which has remarkably high heat-dissipating qualities and which functions as an exceptionally effective getter. The 812 is equipped with the new low-loss Micanolt base which has excellent insulating qualities at high radio frequencies together with low moistureabsorption characteristics. The plate connection of the tube is brought out through a separate seal at the top of the bulb to maintain high insulation.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| Electrical                                       |      |        |        |       |          |
|--------------------------------------------------|------|--------|--------|-------|----------|
| Number of Electrodes                             |      |        |        | 3     |          |
| Filament Voltage                                 |      |        |        | 6.3   | Volts    |
| Filament Current                                 |      |        |        | 4     | Amperes  |
| Amplification Factor                             |      |        |        | 29    |          |
| Direct Interelectrode Capacitances               |      |        |        |       |          |
| Grid-plate                                       |      |        |        | 53    | uuf      |
| Grid-cathode                                     |      |        |        | 53    | uui      |
| Plate-cathodo                                    |      |        |        | 0.0   | uui      |
| 1 Id te -ca thoug                                |      |        |        | 0.0   | uui      |
| Machanical                                       |      |        |        |       |          |
| Rechanical<br>Reco Decemintion                   |      |        |        |       |          |
| Base Description                                 |      |        | Medium | 4-pin | Micanolt |
| Net weight, approx                               |      |        |        | 3     | Ounces   |
| Shipping weight, approx                          |      |        |        | 1     | Pound    |
| Installation and Operation                       |      |        |        |       | GEH-1108 |
|                                                  |      |        |        |       |          |
| MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS |      |        |        |       |          |
|                                                  | ሞህጉ  | icel   | Max    | 1mum* |          |
|                                                  | Oper | etion  | Ret    | ings  |          |
|                                                  | oper | a01011 | 1100   | THEO  |          |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)          |      |        |        |       |          |
| Filament Voltage                                 |      | 6      | .3     |       | Volts    |
|                                                  | 000  | TONO   | 000    | TO    |          |
| D - Dl-t- Wilt                                   | 005  | 10-A5  | 105    | 10-A. | 2        |
| D-C FLATE VOLTAGE                                | 1250 | 1200   | 1250   | 1200  | VOLTS    |
| Max Signal Plate Current, per tubet              |      |        | 125    | 120   | Amperes  |

al Plate Current, per tube‡ D-c Max Signal Plate Input, per tubet Plate Dissipation, per tube‡ D-c Grid Voltage§ Peak A-f Grid Input Voltage

125 Amperes 125 150 Watts 50 Watts 40 -36 -46 Volts 210 232 Volts

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (CONT D)

|                                                      | Typ<br>Oper | ical<br>ation | Max<br>Rat | imum*<br>ings |
|------------------------------------------------------|-------------|---------------|------------|---------------|
|                                                      | CCS         | IC-AS         | CCS        | IC-AS         |
| Zero Signal Plate Current                            | 48          | 42            |            | Ma            |
| Max Signal Plate Current                             | 200         | 200           |            | Ma            |
| Load Resistance, per tube                            | 3750        | 4500          |            | Ohms          |
| Max Signal Driving Power, approx                     | 4.3         | 4.7           |            | Watts         |
| Effective Load, plate to plate                       | 15000       | 18000         |            | Ohms          |
| Max Signal Plate Power Output                        | 175         | 225           |            | Watts         |
| CLASS B R-F POWER AMPLIFIER                          |             |               |            |               |
| Carrier conditions per tube for use with a max modul | ation f     | actor o       | f 1.0      |               |
| Filament Voltage                                     |             | 6             | • 3        | Volts         |
| D-c Plate Voltage                                    | 1250        | 1500          | 1250       | 1500 Volts    |
| D-c Grid Voltage                                     | -35         | - 45          |            | Volts         |
| D-c Grid Current, approx()                           | 1.0         | 1.1           |            | Ma            |
| D-c Plate Current                                    | 48          | 50            | 60         | 60 Ma         |
| Plate Input                                          |             |               | 60         | 75 Watts      |
| Plate Dissipation                                    |             |               | 40         | 50 Watts      |
| Peak R-f Grid Input Voltage                          | 46          | 51            |            | Volts         |
| Driving Power, approx W                              | 1.2         | 1.5           |            | Watts         |
| Plate Power Output                                   | 20          | 25            |            | Watts         |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE   | MODULAT     | ED            |            |               |
| Carrier conditions per tube for use with a max modul | ation f     | actor of      | f 1.0      |               |
| Filament Voltage                                     |             | 6             | .3         | Volts         |
| D-c Plate Voltage                                    | 1000        | 1250          | 1000       | 1250 Volts    |
| D-c Grid Voltage                                     | -100        | -125          | -200       | -200 Volts    |
| From a Grid Resistor of                              | 4000        | 5000          |            | Ohms          |
| D-c Plate Current                                    | 105         | 125           | 105        | 125 Ma        |
| D-c Grid Current, approx()                           | 25          | 25            | 25         | 25 Ma         |
| Plate Input                                          |             |               | 105        | 155 Watts     |
| Plate Dissipation                                    |             |               | 27         | 40 Watts      |
| Peak R-f Grid Input Voltage, approx                  | 180         | 245           |            | Volts         |
| Driving Power, approx()                              | 4.5         | 6             |            | Watts         |
| Plate Power Output                                   | 82          | 120           |            | Watts         |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR           |             |               |            |               |
| Key down conditions per tube without modulation∆     |             |               | -          |               |
| Filament Voltage                                     |             | 6.            | .3         | Volts         |
| D-c Plate Voltage                                    | 1250        | 1500          | 1250       | 1500 Volts    |
| D-c Grid Voltage                                     |             |               | -200       | -200 Volts    |
| From a fixed supply of                               | -125        | -175          |            | Volts         |
| From a Grid Resistor of                              | 5000        | 7000          |            | Ohms          |
| From a Cathode Resistor of                           | 835         | 1000          |            | Ohms          |
| D-c Plate Current                                    | 125         | 150           | 125        | 150 Ma        |
| D-c Grid Current, approx                             | 25          | 25            | 35         | 35 Ma         |
| Plate Input                                          |             |               | 155        | 225 Watts     |
| Plate Dissipation                                    |             | - 1 C         | 40         | 55 Watts      |
| Peak R-f Grid Input Voltage, approx                  | 215         | 285           |            | Volts         |
| Driving Power, approx()                              | 5           | 6.5           |            | Watts         |
| Plate Power Output                                   | 116         | 170           |            | Watts         |
| AS SELF-RECTIFYING OSCILLATOR                        | C           | CS            | С          | CS            |
|                                                      | (Two        | Tubes)        | (Per       | Tube)         |
| A-c Plate Voltage, rms                               | 15          | 00            | 15         | 00 Volts      |

#### AS SELF-RECTIFYING OSCILLATOR

|                                                     | CCS         | CCS        |       |
|-----------------------------------------------------|-------------|------------|-------|
|                                                     | (Two Tubes) | (Per Tube) |       |
| D-c Grid Voltage                                    |             | -125       | Volts |
| D-c Plate Current                                   | 150         | 75         | Ma    |
| D-c Grid Current                                    | 25          | 20         | Ma    |
| Plate Input                                         |             | 125        | Watts |
| Plate Dissipation                                   |             | 40         | Watts |
| Grid Resistor                                       | 5000        |            | Ohms  |
| Peak R-f Grid Voltage                               |             | 350        | Volts |
| Plate Power Output                                  | 170         |            | Watts |
| Useful Power Output, circuit efficiency 80 per cent | 140         |            | Watts |
|                                                     |             |            |       |

- + Registered trade-mark
- # Averaged over any audio-frequency cycle of sine-wave form
- § Grid voltages are given with respect to the midpoint of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be reduced by one-half the filament voltage and the circuit returns made to the negative end of the filament.
- ♦ Subject to wide variations depending upon the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate circuit efficiency is sacrificed. The driving stage should have a tank circuit of good regulation and should be capable of delivering\_ considerably more than the required driving power.
- ¶ At crest of audio cycle with modulation factor of 1.0
- A Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

\* The GL-812 can be operated at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                                                    | 60         | 80       | 100      |
|--------------------------------------------------------------------------|------------|----------|----------|
| Max Permissible Percentage of Max Rated Plate<br>Voltage and Plate Input |            |          |          |
| Class B, R-f                                                             | 100        | 90       | 83       |
| Class C, plate-modulated telegraphy                                      | 100<br>100 | 75<br>75 | 60<br>60 |
|                                                                          |            |          |          |



Mounting Position Vertical: Base down Horizontal: Plane of electrodes vertical

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 444 (8M) Filing No. 8850

#### www.SteamPoweredRadio.Com

## GENERAL 🍘 ELECTRIC

### Transmitting Tube GL-813--- Description and Rating

The 813 is a beam power transmitting tube of extremely high-power sensitivity with a typical power output of 260 watts for Class C telegraph service. Full power output can be obtained with very little driving power and with a reduced number of driver stages. Neutralization is unnecessary in adequately shielded circuits. The 813 makes an excellent power amplifier for the final stage of high-power amateur transmitters where quick band change without neutralizing adjustments is desirable. It is also an excellent high-power frequency multiplier and is capable of giving high harmonic output with unusually high efficiency. The reduced over-all length of the tube provides for short internal leads and minimizes lead inductance.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Cathode - Filamentary                      |      |           |
|--------------------------------------------|------|-----------|
| Number of Electrodes                       | 4    |           |
| Filament Voltage, a-c or d-c               | 10.0 | Volts     |
| Filament Current                           | 5    | Amperes   |
| Grid-plate Transconductance, $I_b = 50$ ma | 3750 | Micromhos |
| Direct Interelectrode Capacitances         |      |           |
| Grid-plate, with external shielding        | 0.2  | uuf       |
| Input                                      | 16.3 | uuf       |
| Output                                     | 14   | uuf       |
| NTEOTI AN TO AL                            |      |           |

#### MECHANICAL

Base Description Net Weight, approx Shipping Weight, approx Installation and Operation

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                             | Typical<br>Operation | Maximum<br>Ratings |
|-----------------------------|----------------------|--------------------|
| CLASS B R-F POWER AMPLIFIER |                      |                    |
|                             |                      | 0 7 0)             |

(Carrier conditions per tube for use with a max modulation factor of 1.0)

| Filament Voltage            |      | 10.0 |      | Volts |
|-----------------------------|------|------|------|-------|
| D-c Plate Voltage           | 1500 | 2000 | 2000 | Volts |
| D-c Grid Voltage*           | -60  | -75  |      | Volts |
| D-c Screen Grid Voltage     | 400  | 400  | 400  | Volts |
| D-c Grid Current+           | 0    | 0    |      | Ma    |
| D-c Plate Current           | 100  | 75   | 100  | Ma    |
| D-c Screen Grid Current     | 4    | 3    |      | Ma    |
| Plate Input                 |      |      | 150  | Watts |
| Screen Grid Input           |      |      | 15   | Watts |
| Plate Dissipation           |      |      | 100  | Watts |
| Peak R-f Grid Input Voltage | 70   | 80   |      | Volts |
| D-c Suppressor Voltage      | 0    | 0    |      |       |
| Driving Powert, approx      | 0    | 0    |      | Watts |
| Plate Power Output          | 50   | 50   |      | Watts |
|                             |      |      |      |       |

CLASS C GRID-MODULATED R-F POWER AMPLIFIER (Carrier conditions per tube for use with a max modulation factor of 1.0)

| File | ament V | loltage |  |
|------|---------|---------|--|
| D-c  | Plate   | Voltage |  |

Giant 7-pin, Bayonet

GEH-1103

4 Ounces

3 Pounds

|                                                                                             | Typical<br>Operation |                    |                    | Maximum<br>Ratings |                         |  |
|---------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------|--------------------|-------------------------|--|
| CLASS C GRID-MODULATED R-F POWER AMPLIFIER (<br>(Carrier conditions per tube for use with a | Cont'd)<br>max modu  | lation fa          | actor of           | 1.0)               |                         |  |
| D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current                                 |                      | -140*<br>400<br>70 | -120*<br>400<br>75 | -200<br>400        | Volts<br>Volts<br>Ma    |  |
| D-c Grid Current, approx<br>D-c Screen Grid Current                                         |                      | - 3                | - 3                | 100                | Ma                      |  |
| Plate Input<br>Screen Grid Input<br>Plate Dissipation                                       |                      |                    |                    | 150<br>15          | Watts<br>Watts<br>Watts |  |
| Peak R <sup>L</sup> f Grid Input Voltage, approx<br>Peak A-f Grid Voltage                   |                      | 145<br>60          | 120<br>60          | 100                | Volts<br>Volts          |  |
| D-c Suppressor Voltage<br>Driving Power‡, approx<br>Plate Power Output                      |                      | 0<br>-<br>40       | 0<br>-<br>50       |                    | Volts<br>Watts          |  |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -                                                | PLATE M              | ODULATED           |                    |                    |                         |  |
| (Carrier conditions per tube for use with a                                                 | max modu             | lation f           | actor of           | 1.0)               |                         |  |
| Filament Voltage<br>D-c Plate Voltage                                                       |                      | 1250               | 10.0<br>1600       | 1600               | Volts<br>Volts          |  |
| D-c Grid Voltage, from a fixed supply of<br>From a grid resistor of §                       |                      | -120*              | -130*              | -300               | Volts<br>Ohms           |  |
| D-c Plate Current<br>D-c Grid Current, approx                                               |                      | 150<br>4           | 150<br>6           | 150<br>25          | Ma<br>Ma                |  |
| D-c Screen Grid Current<br>Plate Input<br>Screen Grid Input                                 |                      | 16                 | 20                 | 240<br>15          | Ma<br>Watts<br>Watts    |  |
| Peak R-f Grid Input Voltage, approx<br>D-c Suppressor Voltage                               |                      | · 195<br>0         | 210<br>0           | 07                 | Volts                   |  |
| Driving Power, approx<br>Plate Power Output                                                 |                      | 0.7                | 1.2                |                    | Watts<br>Watts          |  |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>(Key down conditions per tube without modula  | tion)**              |                    |                    |                    |                         |  |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage                                   | 1250                 | 1500               | 10.0<br>2000       | 2000<br>-300       | Volts<br>Volts<br>Volts |  |
| From a fixed supply of<br>From a cathode resistor of                                        | -60<br>• 285         | -70<br>340         | -90<br>455         |                    | Volts<br>Ohms           |  |
| D-c Screen Grid Voltage $\pi$<br>From a fixed supply of                                     | 300                  | 300                | 400                | 400                | Volts<br>Volts          |  |
| From a series resistor of<br>D-c Plate Current                                              | 42000<br>180<br>7    | 60000<br>180       | 107000<br>180      | 180                | Ohms<br>Ma<br>Ma        |  |
| D-c Screen Grid Current<br>Plate Input                                                      | 23                   | 20                 | 15                 | 360                | Ma<br>Watts             |  |
| Plate Dissipation<br>Screen Grid Input<br>Peak R-f Grid Input Voltage Approx                | 145                  | 150                | 160                | 100<br>22          | Watts<br>Watts          |  |
| D-c Suppressor Voltage<br>Driving Power, approx                                             | 0                    | 0                  | 0.5                |                    | Watt                    |  |
| Plate Power Output                                                                          | 155                  | 190                | 260                |                    | Watts                   |  |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

#### APPLICATION NOTES

The GL-813 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 60 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, Megacycles                                                    |         | 30  | 45 | 60   |
|--------------------------------------------------------------------------|---------|-----|----|------|
| Max Permissible Percentage of<br>Max Rated Plate Voltage and Plate Input |         |     |    |      |
| Class B, r-f                                                             |         | 100 | 93 | 88   |
| Class C, grid-modulated                                                  |         | 100 | 93 | 88   |
| plate-modulated                                                          |         | 100 | 87 | . 75 |
| Class C, telegraphy                                                      | 1. 20.5 | 100 | 87 | 75   |

(Notes for Pages 1 and 2)

- \* For a-c filament supply. If d-c is used, the stated voltages should be decreased by one-half the filament voltage.
- + Usually negligible. Fixed supply or by-passed cathode-resistor bias recommended,
- + At crest of audio-frequency cycle with modulation factor of 1.0.
- § Total effective grid-circuit resistance should not exceed 30,000 ohms.
- \*\* Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
  - ¶ Obtained from fixed supply, by grid resistor (8500, 11,700, 30,000) or cathode resistor (285, 340, 455). If preceding stage is keyed, partial fixed bias is required.
  - $\pi$  Obtained from a separate source, or from the plate-voltage supply with a voltage divider, or through a series resistor of the value shown. Series screen resistor should be used only where the 813 is employed as buffer amplifier and is not keyed. The screen voltage must not exceed 800 volts under key-up conditions.





GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

2-44 (6M) Filing No. 8850

## ELECTRONICS DEPARTMENT GENERAL B ELECTRIC Transmitting Tube GL-814--Description and Rating

GL-814 is a filament type of transmitting tube incorporating new design principles involving the use of directed electron beams. Features resulting from the use of these principles in the 814 are that the screen absorbs little power and that efficient suppressor action is supplied by space-charge effects produced between the screen and the plate. The resultant high power sensitivity makes this tube especially suited for use as an r-f amplifier, frequency multiplier, oscillator, and plate-modulated amplifier. The plate connection is brought out through a separate seal at the top of the bulb to maintain low grid-plate capacitance.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL DESIGN

Electrical

| Filement                           |      | Filamentary |
|------------------------------------|------|-------------|
| Voltage                            | 10   | Volts       |
| Current                            | 3.25 | Amperes     |
| Grid-plate Transconductance        | 3300 | Micromhos   |
| Direct Interelectrode Capacitances |      |             |
| Grid-plate                         | 0.15 |             |
| Input or grid - filament           | 13.5 |             |
| Output or plate - filament         | 13.5 |             |
| Frequency for Maximum Ratings      | 30   | Megacycles  |
|                                    |      |             |

#### Mechanical

| Type of Cooling                           | Convection (Maximum Ambient 60 C)      |
|-------------------------------------------|----------------------------------------|
| Cap Description                           | No. 3907                               |
| Base Description                          | Medium 5-pin, ceramic, No. 5106        |
| Mounting Position Vertical:               | Base Down                              |
| Horizontal                                | : Filament in vertical plane (on edge) |
| Maximum Over-all Dimensions (See Outline) |                                        |
| Length                                    | 7 5/8 Inches                           |
| Diameter                                  | 2 1/16 Inches                          |
| Net Weight, approximate                   | 8 Ounces                               |
| Shipping Weight, approximate              | 8 Pounds                               |
| Installation and Operation Instruction    | GEH-1127                               |
|                                           |                                        |

CLASS B RADIO-FREQUENCY POWER AMPLIFIER (Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0)

|                                    | Typical   | Operation | Maxim |           |       |
|------------------------------------|-----------|-----------|-------|-----------|-------|
|                                    | CCS       | IC and AS | CCS   | IC and AS |       |
| D-c Plate Voltage                  | 1000 1250 | 1500      | 1250  | 1500      | Volts |
| D-c Grid Voltage (Grid No. 1)      | -28 -28   | -35       |       |           | Volts |
| D-c Grid Voltage (Grid No. 2) etc. | 200 200   | 250       | 400   | 400       | Volts |

|                                 | Typical Operation |      |    | Maximum | 8      |        |              |
|---------------------------------|-------------------|------|----|---------|--------|--------|--------------|
|                                 | C                 | CS   | IC | and AS  | CCS IC | and AS |              |
| D-c Plate Current               | 60                | 60   |    | 60      | 60     | 60     | Milliamperes |
| Plate Input                     |                   |      |    |         | 75     | 90     | Watts        |
| Screen Input                    |                   |      |    |         | 6.7    | 6.7    | Watts        |
| Plate Dissipation               |                   |      |    |         | 50     | 60     | Watts        |
| Peak R-F Grid Input Voltage     | 50                | 50   |    | 56      |        |        | Volts        |
| Driving Power*, approximate     | 0.65              | 0.65 |    | 0.85    |        |        | Watts        |
| Plate Power Output, approximate | 20                | 25   |    | 30      |        |        | Watts        |

\*At the crest of audio-frequency cycle.

CLASS C RADIO-FREQUENCY POWER AMPLIFIER GRID MODULATED (Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0)

|                               | Typical Operation |      |           | Maxim | igs      |              |
|-------------------------------|-------------------|------|-----------|-------|----------|--------------|
|                               | CC                | CS   | IC and AS | CCS   | IC and A | S            |
| D-c Plate Voltage             | 1000              | 1250 | 1500      | 1250  | 1500     | Volts        |
| D-c Grid Voltage (Grid No. 1) | -100              | -100 | -120      | -250  | -250     | Volts        |
| D-c Grid Voltage (Grid No. 2) | 200               | 200  | 250       | 400   | 400      | Volts        |
| etc.                          |                   |      |           |       |          |              |
| Beam Forming Plate Voltage    | 0                 | 0    | 0         |       |          | Volts        |
| D-c Plate Current             | . 60              | 60   | 60        | 60    | 60       | Milliamperes |
| D-c Grid Current, approximate | 3                 | 2.8  | 2.5       |       |          | Milliamperes |
| D-c Screen Current            | 2                 | 1.4  | 3         |       |          | Watts        |
| Plate Input                   |                   |      |           | 75    | 90       | Watts        |
| Screen Input                  |                   |      |           | 6.7   | 6.7      | Watts        |
| Plate Dissipation             |                   |      |           | 50    | 60       | Watts        |
| Peak R-F Grid Input Voltage   | 129               | 129  | 150       |       |          | Volts        |
| Peak A-F Grid Voltage         | 64                | 64   | 90        |       |          | Volts        |
| Driving Power, approximate    | 2.5               | 2.3  | 4.2       |       |          | Watts        |
| Plate Power Output            | 25                | 29   | 35        |       |          | Watts        |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED (Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0)

|                               | Typical Operation |      | Maximum Ratings |      |        |              |
|-------------------------------|-------------------|------|-----------------|------|--------|--------------|
|                               | CC                | S    | IC and AS       | CCS  | IC and | AS           |
| D-c Plate Voltage             | 900               | 1000 | 1250            | 1000 | 1250   | Volts        |
| D-c Grid Voltage (Grid No. 1) | -150              | -150 | -150            | -300 | -300   | Volts        |
| D-c Grid Voltage (Grid No. 2) | 300               | 300  | 300             | 400  | 400    | Volts        |
| D-c Plate Current             | 120               | 120  | 144             | 120  | 150    | Milliamperes |
| D-c Grid Current, approx      | 10                | 10   | .10             | 15   | 15     | Milliamperes |
| Plate Input                   |                   |      |                 | 120  | 180    | Watts        |
| Screen Input                  |                   | 1    |                 | 6.7  | 6.7    | Watts        |
| Plate Dissipation             |                   |      |                 | 34   | 50     | Watts        |
| Peak R-F Grid Input Voltage   | 215               | 222  | 222             |      |        | Volts        |
| Driving Power                 | 2                 | 2    | 2               |      |        | Watts        |
| Plate Power Output            | 76                | 87   | 130             |      |        | Watts        |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR (Key-down Conditions per Tube without Modulation)†

| D-c Plate Voltage<br>D-c Grid Voltage (Grid No. 1)<br>D-c Grid Voltage (Grid No. 2) | 1000<br>-70<br>300 | 1250<br>-80<br>300 | 1500<br>-90<br>300 | 1250<br>-300<br>400 | 1500<br>-300<br>400 | Volts<br>Volts<br>Volts |
|-------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|-------------------------|
| Beam Forming Plate Voltage                                                          | 0                  | 0                  | 0                  |                     |                     | Volts                   |
| D-c Plate Current                                                                   | 150                | 144                | 150                | 150                 | 150                 | Milliamperes            |

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR (CONT'D)

|                                        | Typi | Typical Operation |           |       | m Ratings |              |  |
|----------------------------------------|------|-------------------|-----------|-------|-----------|--------------|--|
|                                        | CC   | S                 | IC and AS | CCS I | C and AS  |              |  |
| D-c Grid Current, approx               | 10   | 10                | 10        | 15    | 15        | Milliamperes |  |
| Plate Input                            |      |                   |           | 180   | 225       | Watts        |  |
| Screen Input                           |      |                   |           | .10   | 10        | Watts        |  |
| Plate Dissipation                      |      |                   |           | 50    | 65        | Watts        |  |
| Peak R-F Grid Input Voltage,<br>approx | 150  | 165               | 170       |       |           | Volts        |  |
| Driving Power, approx                  | 1.35 | 1.5               | 1.5       |       |           | Watts        |  |
| Plate Power Output, approx             | 100  | 130               | 160       |       |           | Watts        |  |

†Modulation, essentially negative, may be used if the positive peak of the Audio-Frequency envelope does not exceed 115 per cent of the carrier conditions.

The GL-814 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 75 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                    | 30  | 50 | 75 | Megacycles |
|--------------------------------------------------------------|-----|----|----|------------|
| PERCENTAGE OF MAXIMUM RATED PLATE<br>VOLTAGE AND PLATE INPUT |     |    |    |            |
| Class B                                                      | 100 | 90 | 85 | Per cent   |
| Class C Plate Modulated                                      | 100 | 80 | 64 | Per cent   |
| Class C Unmodulated                                          | 100 | 80 | 64 | Per cent   |
| Class C Grid Modulated                                       | 100 | 90 | 85 | Per cent   |

GL-814

AVERAGE CHARACTERISTICS





GL-814

AVERAGE CHARACTERISTICS





GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (6M) Filing No. 8850

10

Supersedes GET-950B

#### www.SteamPoweredRadio.Com

## ELECTRONICS DEPARTMENT GENERAL B ELECTRIC Transmitting Tube GL-815--Description and Rating

#### DESCRIPTION

The 815 is a new push-pull beam transmitting tube designed especially for use in amateur bands from 160 meters to 2 1/2 meters. Neutralization is generally unnecessary in properly shielded circuits. The 815 contains in one envelope two beam power units whose total maximum plate dissipation is 25 watts. The high efficiency and exceptional power sensitivity of the 815 permit its operation at rated maximum input with very low driving power. For example, a single 815 operated in push-pull Class C telegraph service is capable of handling a power input of 75 watts (ICAS) with less than 0.2 watt of driving power.

The two units of the 815 may be used in push-pull arrangement as modulator, oscillator, or r-f amplifier, or separately, as single-ended amplifiers. Thus, the tube is well suited for use as a frequency multiplier and driver for another 815.

The exceptional efficiency of the 815 at the ultrahigh frequencies is made possible by the balanced and compact structure of the beam units, excellent internal shielding, and close electrode spacing. Internal leads are short in order to minimize internal lead inductance and resistance. The plate leads are brought to standard small metal caps; and the other leads are brought to an octal base. The heaters are arranged to allow operation from either a 12.6- or 6.3-volt supply.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

ELECTRICAL

| Cathode - Indirectly - heated                           | Series | Parallel |           |
|---------------------------------------------------------|--------|----------|-----------|
| Filament Voltage                                        | 12.6   | 6.3      | Volts     |
| Filament Current                                        | 0.8    | 1.6      | Amperes   |
| Grid-screen Amplification Factor                        |        | 6.5      | impor ou  |
| Grid-plate Transconductance, for anode current of 25 ma |        | 4000     | Micromhos |
| Direct Interelectrode Capacitances, each unit           |        |          |           |
| Grid-plate, with external shielding                     |        | 0.2      | uuf       |
| Input                                                   |        | 14       | uuf       |
| Output                                                  |        | 8.5      | uuf       |
|                                                         |        |          |           |

MECHANICAL

| Base or Terminal Description | Large | Wafer | Octal  | 8-pin. | Sleeve |
|------------------------------|-------|-------|--------|--------|--------|
| Net Weight, approx           | 0     |       | 3      | 011    | nces   |
| Shipping Weight, approx      |       |       | 7      |        | unda   |
| Installation and Operation   |       | GEH   | I-1205 | po     | unus   |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                                                                                  |           | Typ<br>Oper       | ation       | Max<br>Rat                           | imum<br>ings                          |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------|--------------------------------------|---------------------------------------|--------------------------------------------------|
| CLASS AB2 A-F POWER AMPLIFIER AND                                                                                                | MODULATOR |                   |             |                                      |                                       | Balance                                          |
| Filament Voltage                                                                                                                 |           |                   | 6           | .3                                   |                                       | Volts                                            |
| D-c Plate Voltage<br>Max Signal Plate Current*<br>D-c Max Signal Plate Input *<br>Max Signal Screen Input*<br>Plate Dissipation* |           | <u>ccs</u><br>400 | ICAS<br>500 | CCS<br>400<br>150<br>60<br>4.5<br>20 | ICAS<br>500<br>150<br>75<br>4.5<br>25 | Volts<br>Milliamperes<br>Watts<br>Watts<br>Watts |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oper                                                                                                                                                  | nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rat                                                                                                                                       | Ings                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0001                                                                                                                                                  | Tana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nati                                                                                                                                      | Tana                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D-c Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | ICAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCS                                                                                                                                       | ICAS                                                                                                               | Volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-c Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                                                                                                                   | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225                                                                                                                                       | 225                                                                                                                | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Peak A-f Grid-to-grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Max Signal Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                                    | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Max Signal Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Max Signal Driving Powert, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.36                                                                                                                                                  | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           |                                                                                                                    | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Load Resistance, per plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1550                                                                                                                                                  | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           |                                                                                                                    | Ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Effective Load, plate-to-plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6200                                                                                                                                                  | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           |                                                                                                                    | Ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Max Signal Plate Power Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42                                                                                                                                                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CLASS B R-F POWER AMPLIFIER<br>(Carrier conditions per tube for use with a m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nax modul                                                                                                                                             | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | facto                                                                                                                                     | r of l                                                                                                             | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filament Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3                                                                                                                                        |                                                                                                                    | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-c Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400                                                                                                                                                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400                                                                                                                                       | 500                                                                                                                | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-c Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -25                                                                                                                                                   | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                                    | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-c Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125‡                                                                                                                                                  | 125‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225                                                                                                                                       | 225                                                                                                                | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-c Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75                                                                                                                                        | 75                                                                                                                 | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D-c Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           |                                                                                                                    | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Plate Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                        | 37.5                                                                                                               | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Screen Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                       | 4.0                                                                                                                | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Plate Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                        | 25                                                                                                                 | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Peak R-f Grid-to-grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driving Power§, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                                    | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Plate Power Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.5                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GRID-MO                                                                                                                                               | DULATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                         |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Carrier conditions per tube for use with a m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ax modula                                                                                                                                             | ation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | facto                                                                                                                                     | r of 1                                                                                                             | .0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Carrier conditions per tube for use with a m<br>Filament Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ax modula                                                                                                                                             | ation :<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·3                                                                                                                                        | r of 1                                                                                                             | .0)<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                   | 6 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·3<br>400                                                                                                                                 | 500                                                                                                                | .0)<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400<br>-40                                                                                                                                            | 6 500<br>-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •3<br>400<br>-175                                                                                                                         | 500<br>-175                                                                                                        | .0)<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400<br>-40<br>125 <b>‡</b>                                                                                                                            | ation :<br>6<br>500<br>-40<br>125 <b></b><br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·3<br>400<br>-175<br>225                                                                                                                  | 500<br>-175<br>225<br>75                                                                                           | .0)<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400<br>-40<br>125 <b></b><br>75                                                                                                                       | ation :<br>500<br>-40<br>125<br>75<br>04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1acto<br>-3<br>400<br>-175<br>225<br>75                                                                                                   | r of 1<br>500<br>-175<br>225<br>75                                                                                 | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400<br>-40<br>125<br>75<br>0.4                                                                                                                        | ation :<br>500<br>-40<br>125 <b>‡</b><br>75<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1acto<br>·3<br>400<br>-175<br>225<br>75                                                                                                   | r of 1<br>500<br>-175<br>225<br>75                                                                                 | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400<br>-40<br>125 <b></b><br>75<br>0.4<br>3                                                                                                           | 4t1on :<br>500<br>-40<br>125‡<br>75<br>0.4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1acto<br>·3<br>400<br>-175<br>225<br>75<br>30                                                                                             | r of 1<br>500<br>-175<br>225<br>75<br>37.5                                                                         | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400<br>-40<br>125 <b></b><br>75<br>0.4<br>3                                                                                                           | ation :<br>500<br>-40<br>125 <b>‡</b><br>75<br>0.4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1acto<br>·3<br>400<br>-175<br>225<br>75<br>30<br>4.0                                                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0                                                                  | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input<br>Plate Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400<br>-40<br>125 <b></b><br>75<br>0.4<br>3                                                                                                           | ation :<br>500<br>-40<br>125 <b>‡</b><br>75<br>0.4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | racto<br>·3<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input<br>Plate Dissipation<br>Peak R-f Grid-to-grid Voltage, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400<br>-40<br>125<br>75<br>0.4<br>3                                                                                                                   | ation :<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | racto<br>·3<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input<br>Plate Dissipation<br>Peak R-f Grid-to-grid Voltage, approx<br>Peak A-f Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19                                                                                                       | ation :<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input<br>Plate Dissipation<br>Peak R-f Grid-to-grid Voltage, approx<br>Peak A-f Grid Voltage<br>Driving Power§, approx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32                                                                                               | ation :<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>17<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Carrier conditions per tube for use with a m<br>Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Screen Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>D-c Screen Current<br>Plate Input<br>Screen Input<br>Plate Dissipation<br>Peak R-f Grid-to-grid Voltage, approx<br>Peak A-f Grid Voltage<br>Driving Power§, approx<br>Plate Power Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5                                                                                       | ation :<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>17<br>0.28<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Watts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Screen Voltage<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax module                                                              | ation :<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>17<br>0.28<br>13<br>DDULATH<br>ation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                               | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volt     |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage</pre>                                                                                                                                                                                                                                                                                                                                                                                                  | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax module                                                              | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>17<br>0.28<br>13<br>DULATE<br>ation f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                               | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Watts<br>Watts<br>Watts<br>.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D a Plate Voltage</pre>                                                                                                                                                                                                                                                                                                                                                                            | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax moduls                                                              | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>DULATE<br>ation f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400<br>-175<br>225<br>75<br>30<br>4.0<br>20                                                                                               | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Plate Voltage</pre>                                                                                                                                                                                                                                                                                                                                                      | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax moduls<br>325                                                       | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>DULATH<br>ation 1<br>6.<br>400<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>ED<br>Cactor<br>325<br>325                                                         | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25                                                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>Fmom a grid moninter arm</pre>                                                                                                                                                                                                                                                                                                                       | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45                                                | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>DULATH<br>ation 1<br>60<br>-45<br>-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>20<br>Sactor<br>.3<br>325<br>-175                                                  | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175                                   | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofy<br/>D-c Screen Voltage</pre>                                                                                                                                                                                                                                                                                                | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1                                     | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0DULATH<br>ation 1<br>60<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Facto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>ED<br>Factor<br>325<br>-175<br>225<br>225<br>-175                                 | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175                                   | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofy<br/>D-c Screen Voltage<br/>From a fixed supply oft</pre>                                                                                                                                                                                                                                                                    | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1                                     | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0DULATH<br>ation 1<br>6.<br>400<br>-45<br>15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>ED<br>Factor<br>3<br>325<br>-175<br>225                                            | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175<br>225                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofy<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series medictor of</pre>                                                                                                                                                                                                                                      | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165                              | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1                                            | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>Pactor<br>325<br>-175<br>225                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175<br>225                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Ohms<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor of<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Plate Current</pre>                                                                                                                                                                                                                 | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1                   | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>00ULATH<br>ation 1<br>60<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>Pactor<br>325<br>-175<br>225                                                      | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175<br>225                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Ohms<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts   |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofv<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Plate Current<br/>D-c Grid Current</pre>                                                                                                                                                                                           | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1<br>123            | ation:<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>00ULATH<br>ation 1<br>6.<br>400<br>-45<br>15000<br>175<br>15000<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>4.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>r of 1<br>400<br>-175<br>225<br>150                     | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volt |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofv<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current</pre>                                                                                                                                                            | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1<br>123<br>4       | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>00ULATH<br>ation 1<br>6<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                 | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>4.0<br>25<br>225<br>150<br>7                            | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofv<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Flate Current<br/>D-c Screen Current<br/>P-c Screen Current</pre> | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1<br>123<br>4<br>16 | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.25<br>15<br>0.4<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                 | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>4.0<br>25<br>225<br>150<br>7<br>5<br>225                | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofv<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Plate Current<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input</pre>                                                                                                                                                        | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MC<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1<br>123<br>4<br>16 | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actor<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>ED<br>Factor<br>325<br>-175<br>225<br>125<br>7<br>40<br>40<br>40<br>20            | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>4.0<br>25<br>225<br>150<br>7<br>150<br>7<br>60          | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage<br/>D-c Screen Voltage<br/>D-c Screen Voltage<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation<br/>Peak R-f Grid-to-grid Voltage, approx<br/>Peak A-f Grid Voltage<br/>Driving Power§, approx<br/>Plate Power Output<br/>CLASS C R-F POWER AMPLIFIER AND OSCILLATOR -<br/>(Carrier conditions per tube for use with a m<br/>Filament Voltage<br/>D-c Plate Voltage<br/>D-c Grid Voltage of<br/>From a grid resistor ofv<br/>D-c Screen Voltage<br/>From a fixed supply of‡<br/>From a series resistor of<br/>D-c Plate Current<br/>D-c Grid Current, approx<br/>D-c Screen Current<br/>Plate Input<br/>Screen Input<br/>Plate Dissipation</pre>                                                                                                                                 | 400<br>-40<br>125<br>75<br>0.4<br>3<br>80<br>19<br>0.32<br>10.5<br>PLATE-MO<br>ax modula<br>325<br>-45<br>11250 1<br>165<br>10000 1<br>123<br>4<br>16 | ation :<br>6<br>500<br>-40<br>125<br>75<br>0.4<br>3<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.28<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>13<br>0.25<br>15<br>0.25<br>15<br>0.25<br>13<br>0.25<br>13<br>0.25<br>15<br>0.25<br>13<br>0.25<br>15<br>0.25<br>13<br>0.25<br>13<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.25<br>15<br>0.5<br>15<br>0.5<br>15<br>0.5<br>15<br>15<br>0.5<br>15<br>0.5<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | racto<br>400<br>-175<br>225<br>75<br>30<br>4.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                 | r of 1<br>500<br>-175<br>225<br>75<br>37.5<br>4.0<br>25<br>37.5<br>4.0<br>25<br>225<br>150<br>7<br>60<br>4.0<br>20 | .0)<br>Volts<br>Volts<br>Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volts<br>Volt   |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

|                                              | Typ<br>Oper  | Typical<br>Operation |      | imum<br>ings |              |
|----------------------------------------------|--------------|----------------------|------|--------------|--------------|
|                                              | CCS          | ICAS                 | CCS  | ICAS         |              |
| Peak R-f Grid-to-grid Voltage, approx        | 112          | 116                  |      |              | Volts        |
| Driving Power, approx                        | 0.2          | 0.16                 |      |              | Watts        |
| Plate Power Output                           | 30           | 45                   |      |              | Watts        |
| CLASS C R F POWER AMPLIFIER AND OSCILLATOR   |              |                      |      |              |              |
| (Key down conditions per tube without modula | ation) $\pi$ |                      |      |              |              |
| Filament Voltage                             |              | e                    | 5.3  |              | Volts        |
| D-c Plate Voltage                            | 400          | 500                  | 400  | 500          | Volts        |
| D-c Grid Voltage                             |              |                      | -175 | -175         | Volts        |
| From a fixed supply of                       | -45          | -45                  |      |              | Volts        |
| From a cathode resistor of                   | 260          | 265                  |      |              | Ohms         |
| From a grid resistor of $\Diamond$           | 10000        | 13000                |      |              | Ohms         |
| D-c Screen Voltage∆                          |              |                      | 225  | 225          | Volts        |
| From a fixed supply of                       | 145          | 200                  |      |              | Volts        |
| From a series resistor of                    | 15000        | 17500                |      |              | Ohms         |
| D-c Plate Current                            | 150          | 150                  | 150  | 150          | Milliamperes |
| D-c Grid Current, approx                     | 4.5          | 3.5                  | 7    | 7            | Milliamperes |
| D-c Screen Current                           | 17           | 17                   |      |              | Milliamperes |
| Plate Input                                  |              |                      | 60   | 75           | Watts        |
| Plate Dissipation                            |              |                      | 20   | 25           | Watts        |
| Screen Input                                 |              |                      | 4.5  | 4.5          | Watts        |
| Peak R-f Grid-to-grid Voltage, approx        | 116          | 5 112                |      |              | Volts        |
| Driving Power, approx                        | 0.23         | 3 0.18               |      |              | Watts        |
| Plate Power Output                           | 41           | 4 56                 |      |              | Watts        |

- \* Averaged over any audio-frequency cycle of sine-wave form.
- † Driver stage should be capable of supplying the grids of the AB<sub>2</sub> stage with the specified driving power at low distortion. The effective resistance per grid circuit of the class AB<sub>2</sub> stage should be kept below 500 ohms and the effective impedance at the highest desired response frequency should not exceed 700 ohms.
- In applications requiring the use of screen voltages above 135 volts, provision should be made for the adjustment of control-grid bias for each unit separately. The necessity for this adjustment at the lower screen voltages depends on the distortion requirements and on whether the plate-dissipation rating is exceeded at zero-signal plate current.
- § At crest of audio-frequency cycle with modulation factor of 1.0.
- O The grid-circuit resistance should never exceed 15000 ohms total per tube, or 30000 ohms per unit. Any additional bias required must be supplied by a cathode resistor or a fixed supply.
- $\pi$  Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

 $\Delta$  The screen voltage must not exceed 600 volts under key-up conditions.

#### APPLICATION NOTES

The GL-815 can be operated at frequencies as high as 150 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 225 megacycles for the various classes of service. Special attention should be given to shielding, r-f by-passing, and adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                                                    | 150 | 200 | 225 |
|--------------------------------------------------------------------------|-----|-----|-----|
| Max Permissible Percentage of<br>Max Rated Plate Voltage and Plate Input |     |     |     |
| Class B, R-f                                                             | 100 | 85  | 75  |
| Class C, Grid-modulated                                                  | 100 | 85  | 75  |
| Plate-modulated                                                          | 100 | 80  | 70  |
| Telegraphy                                                               | 100 | 80  | 70  |









Average Characteristics for Each Unit K-6966447 3-22-41

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

Supersedes GET-971A

#### www.SteamPoweredRadio.Com

# GENERAL BELECTRIC

## Transmitting Tube GL-816--Description and Rating

GL-816, a half-wave, mercury-vapor rectifier, is used in transmitting equipment where a tube with a lower power rating than the 866-A/866 is required. The maximum peak inverse voltage of 5000 volts and the peak plate current of 0.5 ampere are one-half the 866-A/866 values.

Two 816's operating in a full-wave rectifier circuit are capable of delivering to the input of a choke-input filter a rectified voltage of approximately 1600 volts at 0.25 ampere with good regulation.

#### **Technical Information**

These data are for reference only; for design information see the specifications.

GENERAL DESIGN

Number of Electrodes Cathode, Type

> Voltage Current, approx Heating Time, typical

Tube Voltage Drop, approx Cap Base Net Weight, approx Shipping Weight, approx Installation and Operation

MAXIMUM RATINGS

Maximum Peak Inverse Anode Voltage

150 Cycles per Second or Less Condensed Mercury Temperature Maximum Anode Current

> Instantaneous Average



| -   |             |
|-----|-------------|
|     | Filamentary |
| 2.5 | Volts       |
| 10  | and         |
| 10  | Seconds     |
| 15  | Volts       |
|     | Small       |
|     | Small 4-pin |
| 3   | Ounces      |
| 3   | Pounds      |
|     |             |

ET-H2

0

5000 Volts 20 - 60 C

0.5 Ampere 0.125 Ampere

Bottom View of Socket Connections



F = FILAMENT P = PLATENC = NO CONNECTION

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-44 (10M) Filing No. 8850

## GENERAL 🍘 ELECTRIC

#### **Transmitting Tube GL-828 - - Description and Rating**

Description

The 828 is a beam power amplifier tube designed particularly for use as a Class AB<sub>1</sub> audio-frequency amplifier. The high power sensitivity of the 828 allows it to be used in r-f services with very little driving power. Neutralization is generally unnecessary in properly shielded circuits.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Number of Electrodes                                    | 5    |           |
|---------------------------------------------------------|------|-----------|
| Filament Voltage                                        | 10   | Volts     |
| Filament Current                                        | 3.25 | Amperes   |
| Grid-plate Transconductance, for anode current of 43 ma | 4500 | Micromhos |
| Direct Interelectrode Capacitances                      |      |           |
| Grid-plate, with external shielding                     | 0.05 | цнt       |
| Input                                                   | 13.5 | рµf       |
| Output                                                  | 14.5 | дннt      |
| MECHANICAL                                              |      | × .       |
|                                                         |      |           |

| Base or Terminal Description | Medium 5-pin |        |
|------------------------------|--------------|--------|
| Net Weight, approx           | 3            | Ounces |
| Shipping Weight, approx      | 3            | Pounds |
| Installation and Operation   | GEH-1254     |        |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| Typical   | Maximum  |
|-----------|----------|
| Operation | Ratings∆ |

#### CLASS AB1 A-F POWER AMPLIFIER AND MODULATOR

| Filament Voltage                |       | _ 1     | .0   |         | Volts        |
|---------------------------------|-------|---------|------|---------|--------------|
|                                 | CCS   | IC & AS | CCS  | IC & AS |              |
| D-c Plate Voltage               | 1700  | 2000    | 1750 | 2000    | Volts        |
| D-c Suppressor Voltage          | 60    | 60      | 100  | 100     | Volts        |
| Max Signal Plate Current*       |       |         | 150  | 150     | Milliamperes |
| D-c Max Signal Plate Input*     |       |         | 225  | 270     | Watts        |
| Screen Input*                   |       |         | 16   | 23      | Watts        |
| Plate Dissipation*              |       |         | 70   | 80      | Watts        |
| D-c Grid Voltage <sup>†</sup>   | -120  | -120    |      |         | Volts        |
| D-c Screen Voltage <sup>‡</sup> | 750   | 750     | 750  | 750     | Volts        |
| Peak A-f Grid-to-grid Voltage   | 240   | 240     |      |         | Volts        |
| Zero Signal Plate Current       | 50    | 50      |      |         | Milliamperes |
| Max Signal Plate Current        | 248   | 270     |      |         | Milliamperes |
| D-c Suppressor Current          | 9     | 9       |      |         | Milliamperes |
| Zero Signal Screen Current      | 4     | 2       |      |         | Milliamperes |
| Max Signal Screen Current       | 43    | 60      |      |         | Milliamperes |
| Load Resistance, per plate      | 4050  | 4625    |      |         | Ohms         |
| Effective Load, plate-to-plate  | 16200 | 18500   |      |         | Ohms         |
| Max Signal Plate Power Output   | 300   | 385     |      |         | Watts        |

Typical Operation

Maximum Ratings∆

CLASS B R-F POWER AMPLIFIER

(Carrier conditions per tube for use with a max modulation factor of 1.0)

| Filament Voltage              |      | 1       | 0    |         | Volts        |
|-------------------------------|------|---------|------|---------|--------------|
|                               | CCS  | IC & AS | CCS  | IC & AS | б.;          |
| D-c Plate Voltage             | 1250 | 1500    | 1250 | 1500    | Volts        |
| D-c Suppressor Voltage        | 75   | 75      | 100  | 100     | Volts        |
| D-c Grid Voltage <sup>†</sup> | -50  | -50     |      |         | Volts        |
| D-c Screen Voltage            | 400  | 400     | 400  | 400     | Volts        |
| D-c Plate Current             | 84   | 80      | 100  | 100     | Milliamperes |
| D-c Suppressor Current        | 4    | 4       |      |         | Milliamperes |
| D-c Screen Current            | 5    | 5       |      |         | Milliamperes |
| Plate Input                   |      |         | 105  | 120     | Watts        |
| Suppressor Input              | þ    |         | 5    | 5       | Watts        |
| Screen Input                  |      |         | 11   | 11      | Watts        |
| Plate Dissipation             |      |         | 70   | 80      | Watts        |
| Peak R-f Grid-to-grid Voltage | 52   | 50      |      |         | Volts        |
| Driving Power, approx§        | 0.5  | 0.4     |      |         | Watt         |
| Plate Power Output            | 36   | 41      |      |         | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - GRID-MODULATED

(Carrier conditions per tube for use with a max modulation factor of 1.0)

| Filament Voltage                      |      |      | 10   |      | Volts        |
|---------------------------------------|------|------|------|------|--------------|
| D-c Plate Voltage                     | 1250 | 1500 | 1250 | 1500 | Volts        |
| D-c Suppressor Voltage                | 75   | 75   | 100  | 100  | Volts        |
| D-c Grid Voltage                      | -150 | -150 | -300 | -300 | Volts        |
| D-c Screen Voltage                    | 400  | 400  | 400  | 400  | Volts        |
| D-c Plate Current                     | 84   | 80   | 100  | 100  | Milliamperes |
| D-c Suppressor Current                | 4    | 3.5  |      |      | Milliamperes |
| D-c Grid Current, approx              | 1.6  | 1.3  |      |      | Milliamperes |
| D-c Screen Current                    | 5    | 4    |      |      | Milliamperes |
| Plate Input                           |      |      | 105  | 120  | Watts        |
| Suppressor Input                      |      |      | 5    | 5    | Watts        |
| Screen Input                          |      |      | 11   | 11   | Watts        |
| Plate Dissipation                     |      |      | 70   | 80   | Watts        |
| Peak R-f Grid-to-grid Voltage, approx | 165  | 165  |      |      | Volts        |
| Peak A-f Grid Voltage                 | 94   | 94   |      |      | Volts        |
| Driving Power, approx§                | 2.5  | 2.5  |      |      | Watts        |
| Plate Power Output                    | 36   | 41   |      |      | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED (Carrier conditions per tube for use with a max modulation factor of 1.0)

| Filament Voltage                     |       |       | 10   |      | Volts        |
|--------------------------------------|-------|-------|------|------|--------------|
| D-c Plate Voltage                    | 1000  | 1250  | 1000 | 1250 | Volts        |
| D-c Suppressor Voltage               | 75    | .75   | 100  | 100  | Volts        |
| D-c Grid Voltage of                  | -140  | -140  | -300 | -300 | Volts        |
| From a grid resistor of              | 14000 | 11700 |      |      | Ohms         |
| D-c Screen Voltage                   | 400   | 400   | 400  | 400  | Volts        |
| From a series resistor of $\Diamond$ | 26000 | 30000 |      |      | Ohms         |
| D-c Plate Current                    | 135   | . 160 | 135  | 160  | Milliamperes |
| D-c Suppressor Current               | 13    | 15    |      |      | Milliamperes |
| D-c Grid Current, approx             | 10    | 12    | 15   | 15   | Milliamperes |
| D-c Screen Current                   | 23    | 28    |      |      | Milliamperes |
| Plate Input                          |       |       | 135  | 200  | Watts        |
| Suppressor Input                     |       |       | 5    | 5    | Watts        |
| Screen Input                         | -     |       | 11   | · 11 | Watts        |
| Plate Dissipation                    |       |       | 47   | 70   | Watts        |

| Typical   | Maximum  |
|-----------|----------|
| Operation | Ratings∆ |

GL-828

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED (CONT'D) (Carrier conditions per tube for use with a max modulation factor of 1.0)

|                                       | CCS | IC & AS | CCS IC & AS |
|---------------------------------------|-----|---------|-------------|
| Peak R-f Grid-to-grid Voltage, approx | 230 | 250     | Volts       |
| Driving Power, approx                 | 2.1 | 2.7     | Watts       |
| Plate Power Output                    | 100 | 150     | Watts       |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR

(Key down conditions per tube without modulation) $\pi$ 

| Filament Voltage                      |      | 10   |      |      | Volts        |
|---------------------------------------|------|------|------|------|--------------|
| D-c Plate Voltage                     | 1250 | 1500 | 1250 | 1500 | Volts        |
| D-c Suppressor Voltage                | 75   | 75   | 100  | 100  | Volts        |
| D-c Grid Voltage                      |      |      | -300 | -300 | Volts        |
| From a fixed supply of                | -95  | -100 |      |      | Volts        |
| From a cathode resistor of            | 415  | 430  |      |      | Ohms         |
| From a grid resistor of               | 7900 | 8300 |      |      | Ohms         |
| D-c Screen Voltage                    | 400  | 400  | 400  | 400  | Volts        |
| D-c Plate Current                     | 160  | 180  | 160  | 180  | Milliamperes |
| D-c Suppressor Current                | 22   | 14   |      |      | Milliamperes |
| D-c Grid Current, approx              | 12   | 12   | 15   | 15   | Milliamperes |
| D-c Screen Current                    | 35   | 28   |      |      | Milliamperes |
| Plate Input                           |      |      | 200  | 270  | Watts        |
| Suppressor Input                      |      |      | 5    | 5    | Watts        |
| Plate Dissipation                     |      |      | 70   | 80   | Watts        |
| Screen Input                          |      |      | 16   | 16   | Watts        |
| Peak R-f Grid-to-grid Voltage, approx | 195  | 205  |      |      | Volts        |
| Driving Power, approx                 | 2.1  | 2.2  |      |      | Watts        |
| Plate Power Output                    | 150  | 200  |      |      | Watts        |

\* Averaged over any a-f cycle of sine wave form.

\*\* Distortion only 1 per cent with 20 db of feedback to grid of driver.

+ Grid voltages are given with respect to the midpoint of filament operated on a.c. If d.c. is used, each stated value of grid voltage should be decreased by one-half the filament voltage and the circuit returns made to the negative end of the filament.

- *zero-signal screen voltage must not exceed 775 volts.*
- § At crest of audio-frequency cycle with modulation factor of 1.0.
- ◊ Connected to modulated plate voltage supply.
- $\pi$  Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

△ The GL-828 can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 75 megacycles for the various classes of service. Special attention should be given to shielding, r-f by-passing, and adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                   | 30    | 50 | 75 |
|-----------------------------------------|-------|----|----|
| Max Permissible Percentage of           |       |    |    |
| Max Rated Plate Voltage and Plate Input |       |    |    |
| Class B, R-f                            | 100   | 90 | 80 |
| Class C, Grid-modulated                 | ° 100 | 90 | 80 |
| Plate-modulated                         | 100   | 80 | 65 |
| Telegraphy                              | 100   | 80 | 65 |
|                                         |       |    |    |



Plate Volts 200

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 2-42 (4M)

Filing No. 8850

PRINTED IN USA

GENERAL C ELECTRIC

## Transmitting Tube GL-829-B--Description and Rating

The 829-B is a push-pull, beam power transmitting tube of the heater-cathode type. It contains two beam power units within one envelope. Total maximum plate dissipation is 40 watts. The exceptional efficiency and high power sensitivity of the 829-B permit full power output with very low driving power. For example, a single tube operated in push-pull Class C telegraph service is capable of handling a power input of 120 watts with less than a watt of driving power -- at frequencies as high as 200 mc (1 1/2 meters). The 829-B may be operated at reduced ratings at frequencies as high as 250 mc. Plate-to-plate circuit resonance of the tube is 750 megacycles.

The exceptional efficiency of the 829-B at the ultrahigh frequencies is made possible by the balanced and compact structure of the beam power units, excellent internal shielding, and close electrode spacing. The internal leads are short and heavy in order to minimize internal lead inductance. The terminal arrangement provides excellent insulation and is designed to facilitate symmetry of circuit layout. Neutralization of the tube is unnecessary in adequately shielded circuits.

The heaters are arranged to allow operation from either a 12.6- or a 6.3-volt supply.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

ELECTR ICAL

|            |            | Series   | Parallel |       |
|------------|------------|----------|----------|-------|
| Filament   | Voltage    | 12.6     | 6.3      | Volts |
| Filament   | Current    | 1.125    | 2.25     | Amp   |
| Grid-plat  | te Transco | nductand | ce,      |       |
| $I_b = 60$ | ) ma       |          | 8500     | Mmhos |
| Grid-scre  | een Amplif | ication  |          |       |
| Factor     |            |          | 7        |       |
| Direct Ir  | nterelectr | ode      |          |       |
| Capacit    | cances, ea | ch unit  |          |       |
| Grid-pl    | Late (with | externa  | 1        |       |
| shiel      | lding)     |          | 0.1      | uuf   |
| Input      |            |          | 14.5     | uuf   |
| Output     |            |          | 7.0      | uuf   |

Screen-cathode Capacitance, approx (including internal screen by-pass condenser) 65 uuf

#### MECHANICAL

Base Description - See outlineType of CoolingForced airNet Weight, approx3 1/2 OuncesShipping Weight, approx3 PoundsInstallation and Operation - GEH-1189

Forced air cooling is not required in intermittent service where the ON period of plate power application is ordinarily not more than five minutes, and when the OFF period is not less than the ON period.

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS C R-f POWER AMPLIFIER - GRID MODU-LATED

Carrier conditions per tube for use with a maximum modulation factor of 1.0

| Typical Max                                |               |       |      |       |  |
|--------------------------------------------|---------------|-------|------|-------|--|
|                                            | Oper- Rat-    |       |      |       |  |
|                                            | atic          | on :  | ings |       |  |
| Filament Voltage                           |               | 6.3   |      | Volts |  |
| D-c Plate Voltage                          | 500           | 750   | 750  | Volts |  |
| D-c Grid Voltage*                          | -38           | -55   | -175 | Volts |  |
| D-c Screen Voltage.                        | 200           | 200   | 225  | Volts |  |
| D-c Plate Current                          | 120           | 80    | 120  | Ma    |  |
| D-c Grid Current, approx                   | 2             | 0     |      | Ma    |  |
| D-c Screen Current                         | 10            | 5     |      | Ma    |  |
| Plate Input                                |               |       | 60   | Watts |  |
| Screen Input                               |               |       | 6    | Watts |  |
| Plate Dissipation                          |               |       | 40   | Watts |  |
| Peak R-f Grid Input                        |               |       |      |       |  |
| Voltage, approx                            | 82            | 104   |      | Volts |  |
| Peak A-f Grid Voltage                      | 17            | 15    |      | Volts |  |
| Driving Powert, approx                     | 0.5           | 0.7   |      | Watts |  |
| Plate Power Output                         | 23            | 24    |      | Watts |  |
|                                            |               |       |      |       |  |
| CLASS C R-f POWER AMPLIFIER & OSCILLATOR - |               |       |      |       |  |
| PLATE MODULATED                            |               |       |      |       |  |
| Carrier conditions per t                   | tube          | for u | se w | ith a |  |
| maximum modulation facto                   | or of         | 1.0   |      |       |  |
| Filament Voltage                           | in the second | 6.3   |      | Volts |  |
| D-c Plate Voltage                          | 425           | 600   | 600  | Volts |  |
| D-c Grid VoltageA                          | -60           | -70 - | -175 | Volts |  |
| From a Grid Resistort                      | of            | 5     | 500  | Ohms  |  |
| 5                                          | 5500          | 5800  |      | Ohms  |  |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com
| D-c Screen Voltage‡   | 200  | 200          | 225 | Volts |
|-----------------------|------|--------------|-----|-------|
|                       | 6400 | 13300        |     | Ohms  |
| D-c Plate Current     | 212  | 150          | 212 | Ma    |
| D-c Grid Current,     |      |              |     |       |
| approx                | 11   | 12           | 15  | Ma    |
| D-c Screen Current    | 35   | 30           |     | Ma    |
| Plate Input           |      |              | 90  | Watts |
| Screen Input          | 199  | a ang sin an | 7   | Watts |
| Plate Dissipation     |      |              | 28  | Watts |
| Peak R-f Grid Input   |      |              |     |       |
| Voltage, approx       | 154  | 172          |     | Volts |
| Driving Power, approx | 0.8  | 0.9          |     | Watts |
| Plate Power Output    | 63   | 70           |     | Watts |

CLASS C R-f POWER AMPLIFIER & OSCILLATOR Key-down conditions per tube without modulation§

| Filament Voltage          |      | 6.3   |           | Volts |
|---------------------------|------|-------|-----------|-------|
| D-c Plate Voltage         | 500  | 750   | 750       | Volts |
| D-c Grid Voltage          | -45  | -55   | -175      | Volts |
|                           | 3750 | 4600  |           | Ohms  |
|                           | 160  | 270   |           | Ohms  |
| D-c Screen Voltages $\pi$ | 200  | 200   | 225       | Volts |
| THE AT ANY AND SAFE       | 9300 | 18300 | an in the | Ohms  |
| D-c Plate Current         | 240  | 160   | 240       | Ma    |
| D-c Grid Current,         |      |       |           |       |
| approx                    | 12   | 12    | 15        | Ma    |
| D-c Screen Current        | 32   | 30    |           | Ma    |
| Plate Input               |      |       | 120       | Watts |
| Plate Dissipation         |      |       | 40        | Watts |
| Screen Input              |      |       | 7         | Watts |
| Peak R-f Grid Input       |      |       |           |       |
| Voltage, approx           | 124  | 140   |           | Volts |
| Driving Power, approx     | 0.7  | 0.8   |           | Watts |
| Plate Power Output        | 83   | 87    |           | Watts |

- \* Preferably obtained from a fixed supply, or may also be obtained from an unbypassed (for audio frequencies) cathode resistor.
- t At crest of audio-frequency cycle with modulation factor of 1.0.
- Δ The grid-circuit resistance should never exceed 15,000 ohms (total) per tube, or

30,000 ohms per unit. Any additional bias required must be supplied by a cathode resistor or a fixed supply.

- # Obtained from a separate source modulated with the plate supply, or obtained from the modulated plate-voltage supply through a resistor of the value shown.
- § Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
- ◊ Obtained from a fixed supply, by grid resistor (3750, 4600), or cathode resistor (160, 270).
- π Obtained from a separate source, or from the plate voltage supply with a voltage divider, or through a series resistor of the value shown.

#### APPLICATION NOTES

The GL-829-B can be operated at frequencies as high as 200 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 250 megacycles for the various classes of service. Special attention should be given to shielding, cooling, and r-f by-passing at these frequencies.

Frequency, megacycles 200 250

Maximum Permissible Percentage of Maximum Rated Plate Voltage and Plate Input

|       |   | (grid-modulated  | 100 | 94 |
|-------|---|------------------|-----|----|
| Class | С | (plate-modulated | 100 | 89 |
|       |   | (telegraphy      | 100 | 89 |







Typical Characteristics K-6966429 12-15-44



MOUNTING POSITION

-

VERTICAL - Plate terminals up or down HORIZONTAL - Plane of each plate vertical (on edge)

Outline Transmitting Tube GL-829-B K-6966966 12-15-44



GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 12-44 (7M) Filing No. 8850

www.SteamPoweredRadio.Com

PRINTED IN U.S.A.

## GENERAL C ELECTRIC

#### Transmitting Tube GL-830-B--Description and Rating

GL-830-B, a three-electrode transmitting tube, is used as a Class B modulator, radio-frequency amplifier, and oscillator. This tube, as a radio-frequency amplifier or oscillator, can be operated at maximum rated conditions at frequencies as high as 15 megacycles. For Class C telegraph and Class B services the plate dissipation is 60 watts. Two tubes of this type can deliver an output of 175 watts in Class B audio service.

These data are for reference only. For design information see the specifica-tions.

#### **TECHNICAL INFORMATION**

GENERAL DESIGN

| Filament Voltage                           | 10        | Volts       |   |
|--------------------------------------------|-----------|-------------|---|
| Filament Current                           | 2         | Amperes     |   |
| Amplification Factor                       | 25        |             |   |
| Direct Interelectrode Capacitances, approx |           |             |   |
| Grid-plate                                 | 11        | uuf         |   |
| Grid-filament                              | 5         | uuf         |   |
| Plate-filament                             | 1.8       | uuf         |   |
| Cap                                        |           | Small Meta  | 1 |
| Base or Terminal Description               | Medium 4. | -pin Bayone | t |
| Net Weight, approx                         | 3         | Ounces      |   |
| Shipping Weight, approx                    | 3         | Pounds      |   |
| Installation and Operation                 |           |             |   |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| CLASS B A-F POWER AMPLIFIER (TWO TUBES)          | Typical<br>ing Cond | Operat-<br>litions | Maximum<br>Ratings |              |
|--------------------------------------------------|---------------------|--------------------|--------------------|--------------|
| D-c Plate Voltage                                | 800                 | 1000               | 1.000 m            | Volts        |
| Maximum Signal Plate Current*                    |                     |                    | 150#               | Milliamperes |
| D-c Maximum Signal Plate Input*                  |                     |                    | 150π               | Watts        |
| Plate Dissipation*                               |                     |                    | 60π                | Watts        |
| D-c Grid Voltage                                 | -27                 | -35                |                    | Volts        |
| Peak A-F Grid-to-Grid Voltage                    | 250                 | 270                |                    | Volts        |
| Zero Signal Plate Current                        | 20                  | 20                 |                    | Milliamperes |
| Maximum Signal Plate Current                     | 280                 | 280                |                    | Milliamperes |
| Maximum Signal Driving Power, approx             | 5                   | 6                  |                    | Watts        |
| Effective Load, plate-to-plate                   | 6000                | 7600               |                    | Ohms         |
| Maximum Signal Plate Power Output                | 135                 | 175                |                    | Watts        |
| CLASS B R-F POWER AMPLIFIER                      |                     |                    |                    |              |
| Carrier conditions per tube for use with a maxim | um modula           | tion fac           | tor of 1           | .0           |

| Filament Voltage, a-c | 10  | 10   |        | Volts        |
|-----------------------|-----|------|--------|--------------|
| D-c Grid Voltage∆     | -27 | -35  |        | Volts        |
| D-c Plate Voltage     | 800 | 1000 | 1000 m | Volts        |
| D-c Plate Current     | 95  | 85   | 100π   | Milliamperes |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

#### CLASS B R-F POWER AMPLIFIER (CONT'D)

Carrier conditions per tube for use with a maximum modulation factor of 1.0

|                             |  | Typical<br>ing Con | Operat-<br>litions | Maximum<br>Ratings |              |
|-----------------------------|--|--------------------|--------------------|--------------------|--------------|
| Plate Input                 |  |                    |                    | 90 <b>π</b>        | Watts        |
| Plate Dissipation           |  |                    |                    | 60 <b>π</b>        | Watts        |
| Peak R-F Grid Input Voltage |  | 85                 | 85                 |                    | Volts        |
| D-c Grid Current, approx§   |  | 7                  | 6                  |                    | Milliamperes |
| Driving Power, approx§†     |  | 9                  | 6                  |                    | Watts        |
| Plate Power Output, approx  |  | 23                 | 26                 |                    | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE MODULATED Carrier conditions per tube for use with a maximum modulation factor of 1.0

| Filament Voltage, a-c               | 10   | 10   |              |              |
|-------------------------------------|------|------|--------------|--------------|
| D-c Plate Voltage                   | 600  | 800  | 800 <i>m</i> | Volts        |
| D-c Grid Voltage                    | -140 | -150 | -300π        | Volts        |
| D-c Plate Current                   | 95   | 95   | 100π         | Milliamperes |
| D-c Grid Current, approx§           | 30   | 20   | 30π          | Milliamperes |
| Plate Input                         |      |      | 80π          | Watts        |
| Plate Dissipation                   |      |      | 40 <b>π</b>  | Watts        |
| Peak R-F Grid Input Voltage, approx | 255  | 265  |              | Volts        |
| Driving Power, approx§              | 7    | 5    |              | Watts        |
| Plate Power Output                  | 38   | 50   |              | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation;

|                                     | ing Conditions |      |      | Ratings       |              |  |  |
|-------------------------------------|----------------|------|------|---------------|--------------|--|--|
| Filament Voltage, a-c               | 10             | 10   | 10   |               |              |  |  |
| D-c Plate Voltage                   | 600            | 800  | 1000 | 1000 <i>π</i> | Volts        |  |  |
| D-c Grid Voltage                    | -95            | -105 | -110 | -300m         | Volts        |  |  |
| D-c Plate Current                   | 140            | 140  | 140  | 150 <b>m</b>  | Milliamperes |  |  |
| D-c Grid Current, approx§           | 30             | 30   | 30   | 301           | Milliamperes |  |  |
| Plate Input                         |                |      |      | 150 <i>m</i>  | Watts        |  |  |
| Plate Dissipation                   |                |      |      | 60 <b>m</b>   | Watts        |  |  |
| Peak R-F Grid Input Voltage, approx | 235            | 245  | 250  |               | Volts        |  |  |
| Driving Power, approx§              | 7              | 7    | 7    |               | Watts        |  |  |
| Plate Power Output, approx          | 45             | 70   | 90   |               | Watts        |  |  |
|                                     |                |      |      |               |              |  |  |

 $\pi$  Per tube.

\* Averaged over any audio-frequency cycle.

- △ Grid voltages are given with respect to the mid-point of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be decreased by 5.0 volts and the circuit returns connected to the negative end of the filament.
- § Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power.

† At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.







Top View of Socket Connections

PLATE NO CON-GRID

## ELECTRONICS DEPARTMENT

#### Transmitting Tube GL-833-A--Description and Rating

GL-833-A is a three-electrode transmitting tube of the high-mu type for use as a radio-frequency amplifier, oscillator, and Class B modulator. Because of its high perveance, the 833-A can be operated at high plate efficiency with low-driving power.

Designed in a new way with post terminals which provide a sturdy structure and make bases unnecessary, the 833-A has a minimum amount of insulation within the tube. The anode is supported directly from its post terminal at the top of the tube. Short, heavy-current leads are used to connect the anode and the grid to their respective terminals in order to carry the high circulating r-f current at the high frequencies and to minimize internal lead inductance.

As a result of its construction, the 833-A provides exceptional efficiency at high frequencies. It can be operated in Class C telegraph service with maximum input of 2000 watts at frequencies as high as 30 megacycles, and with reduced input at frequencies as high as 75 megacycles.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

ELECTRICAL

| Number of Electrodes               | 3    |         |
|------------------------------------|------|---------|
| Filament Voltage                   | 10   | volts   |
| Filament Current                   | 10   | amperes |
| Amplification Factor               | 35   |         |
| Direct Interelectrode Capacitances |      |         |
| Grid-plate                         | 6.3  | uuf     |
| Grid-to-filament                   | 12.3 | uuf     |
| Plate-to-filament                  | 8.5  | uuf     |
|                                    |      |         |

MECHANICAL

Over-all dimensions Maximum Length Maximum Diameter Terminal Description Net Weight, approx Shipping Weight, approx Installation and Operation

8 13/16 inches 4 19/32 inches See Outline 1 pound 3 pounds GEH-1190

MAXIMUM RATINGS

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES)

TYPICAL OPERATION

# Filament Voltage 10 volts CCS ICAS CCS ICAS D-c Plate Voltage 3000 4000 4000 3000 4000 4000 volts Max Signal Plate Current, per tubet 500 500 500 ma

www.SteamPoweredRadio.Com

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES)

|                                                                              |                    | TYPICAL OPERATION |                      |         | MAXIMUM RATI   |             | FINGS       |             |                |
|------------------------------------------------------------------------------|--------------------|-------------------|----------------------|---------|----------------|-------------|-------------|-------------|----------------|
|                                                                              |                    |                   | CCS                  | ICAS    |                | CC          | S           | ICAS        |                |
|                                                                              |                    | 2                 | *                    | *       |                |             | *           | *           |                |
| D-c Max Signal Plate Input, per<br>Plate Dissipation <sup>†</sup> , per tube | tube†              |                   |                      |         |                | 1125<br>300 | 1600<br>400 | 1800<br>450 | watts<br>watts |
| D-c Grid Voltage ‡                                                           |                    | -70               | -100                 | -100    |                |             |             |             | volts          |
| Peak A-f Grid Input Voltage                                                  |                    | 400               | 480                  | 510     |                |             |             |             | volts          |
| Zero Signal Plate Current                                                    |                    | 100               | 100                  | 100     |                |             |             |             | ma             |
| Max Signal Plate Current                                                     |                    | 750               | 800                  | 900     |                |             |             |             | ma             |
| Max Signal Driving Power, approx                                             | x                  | 20                | 29                   | 38      |                |             |             |             | watts          |
| Effective Load, plate to plate<br>Maximum Signal Plate Power Output          | ut,                | 9500              | 12000                | 11000   |                |             |             |             | ohms           |
| approx                                                                       |                    | 1650              | 2400                 | 2700    |                |             |             |             | watts          |
| Load Resistance, per tube                                                    |                    | 2375              | 3000                 | 2750    |                |             |             |             | onms           |
| CLASS B R-F POWER AMPLIFIER                                                  | r use w            | ith a             | max mo               | dulatio | on fa          | ctor d      | of 1.0      | )           |                |
| Tilement Waltana                                                             |                    |                   | *                    | *       | 10             |             | *           | ,<br>*      | volta          |
| Filament Voltage                                                             |                    | 3000              | 4000                 | 4000    | TO             | 3000        | 4000        | 4000        | volte          |
| D-c frate voltage                                                            |                    | -70               | -120                 | -120    |                | 2000        | 4000        | 4000        | volta          |
| D-c Plate Current                                                            |                    | 150               | 150                  | 150     |                | 300         | 300         | 300         | ma             |
| Plate Input                                                                  |                    | -)-               | -)-                  | -2-     |                | 450         | 600         | 675         | watts          |
| Plate Dissipation                                                            |                    |                   |                      |         |                | 300         | 400         | 450         | watts          |
| Peak R-f Grid Input Voltage                                                  |                    | 90                | 120                  | 130     |                |             |             |             | volts          |
| Driving Powers SA, approx                                                    |                    | 10                | 14                   | 21      |                |             |             |             | watts          |
| Plate Power Output, approx                                                   |                    | 150               | 225                  | 250     |                |             |             |             | watts          |
| D-c Grid Current, approxA                                                    |                    | 2                 | 2                    | 3       |                |             |             |             | ma             |
| CLASS C R-F POWER AMPLIFIER AN<br>(Carrier conditions per tube fo            | D OSCIL<br>r use w | LATOR<br>ith a    | - PLAT<br>max mc     | E MODUI | LATED<br>on fa | ctor (      | of 1.0      | )           |                |
| Filament Voltage                                                             |                    |                   | *                    | *       | 10             |             | *           | *           | volts          |
| D-c Plate Voltage                                                            |                    | 2500              | 3000                 | 4000    |                | 2500        | 3000        | 4000        | volts          |
| D-c Grid Voltage $\pi$                                                       |                    | -3.00             | -300                 | -325    |                | -500        | -500        | -500        | volts          |
|                                                                              |                    | 4000              | 3600                 | 3600    |                |             |             |             | ohms           |
| D-c Plate Current                                                            |                    | 335               | 415                  | 450     |                | 400         | 450         | 450         | ma             |
| D-c Grid Current, approx                                                     |                    | 754               | <u>a</u> 85 <u>a</u> | 900     |                | 100         | 100         | 100         | ma             |
| Plate Input                                                                  |                    |                   |                      |         |                | 835         | 1250        | 1800        | watts          |
| Plate Dissipation                                                            |                    | 20                | 27                   | 10      |                | 200         | 270         | 350         | watts          |
| Driving PowerA, approx                                                       |                    | 625               | 1000                 | 1500    |                |             |             |             | walls          |
| Peak R-f Grid Voltage                                                        |                    | 460               | 490                  | 520     |                |             |             |             | volts          |
| CLASS C R-F POWER AMPLIFIER AND                                              | OSCILL             | ATOR              | etion)               | 2       |                |             |             |             |                |
| (re) down conditions ber tube w                                              | Lonout             | mouur             |                      |         |                |             |             |             |                |
| Filament Voltage                                                             |                    | 2000              | *                    | *       | 10             | 2000        | *           | *           | volts          |
| D-c Plate Voltage                                                            |                    | 3000              | 4000                 | 4000    |                | 3000        | 4000        | 4000        | volts          |
| D-C Grid Voltage#                                                            |                    | -200              | -200                 | 2400    |                | -500        | -500        | -500        | ohme           |
|                                                                              |                    | 425               | 380                  | 380     |                |             |             |             | ohms           |
| D-c Plate Current                                                            |                    | 415               | 450                  | 500     |                | 500         | 500         | 500         | ma             |
| D-c Grid Current. approx                                                     |                    | 55/               | م<br>۲5۸             | 95^     |                | 100         | 100         | 100         | ma             |
| Plate Input                                                                  |                    |                   |                      |         |                | 1250        | 1800        | 2000        | watts          |
| Plate Dissipation                                                            |                    |                   |                      |         |                | 300         | 400         | 450         | watts          |
| Peak R-f Grid Input Voltage, ap                                              | prox               | 360               | 375                  | 415     |                |             |             |             | volts          |
| Driving PowerA, approx                                                       |                    | 20                | 26                   | 35      |                |             |             |             | watts          |
| Plate Power Output, approx                                                   |                    | 1000              | 1440                 | 1600    |                |             |             |             | watts          |

- \* Forced-air cooling required at these conditions of operation. When forced-air cooling is required an air flow of 40 cfm from a two-inch diameter nozzle directed vertically downward on bulb between grid and plate seals is required. Bulb temperature between grid and plate seals must not exceed 145 C. For conditions of operation where forced-air cooling is not required, adequate free circulation of air around the tube is necessary for satisfactory operation.
- t Averaged over any audio-frequency cycle of sine-wave form.
- **‡** For a-c filament supply.
- § At crest of audio-frequency cycle.
- △ Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate circuit efficiency is sacrificed. The driving stage should have a tank circuit of good regulation and should be capable of delivering considerably more than the required driving power.
- $\pi$  Obtained by grid resistor of value shown or by partial self-bias methods.
- Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- # Obtained from fixed supply, by grid resistor (3500, 2650, 2400), or by cathode resistor (425, 380, 380).

#### APPLICATION NOTES

The GL-833-A can be operated at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

|                                                                                  |                   | Natu:<br>Cool: | Forced-air<br>Cooling |                   |                |                |
|----------------------------------------------------------------------------------|-------------------|----------------|-----------------------|-------------------|----------------|----------------|
| Frequency, megacycles                                                            | 30                | 50             | 75                    | 20                | 50             | 75             |
| Maximum Permissible Percentage of<br>Maximum Rated Plate Voltage and Plate Input |                   |                |                       |                   |                |                |
| Class B, r-f<br>Class C, plate-modulated<br>Class C                              | 100<br>100<br>100 | 98<br>90<br>90 | 94<br>72<br>72        | 100<br>100<br>100 | 97<br>83<br>83 | 93<br>65<br>65 |



Average Plate Characteristics K-6966408 9-12-40



GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

2-44 (8M) Filing No. 8850

www.SteamPoweredRadio.Com

Supersedes GET-963A

ELECTRONICS DEPARTMENT

## GENERAL 🍪 ELECTRIC

#### Transmitting Tube GL-835--Description and Rating

The 835 is a three-electrode transmitting tube for use as an oscillator, radio-frequency amplifier, and audio-frequency amplifier or modulator (Class A or B).

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see specifications.

| Filament Voltage                         |       | 10.0    |     | Volts      |
|------------------------------------------|-------|---------|-----|------------|
| Filament Current                         |       | 3.25    |     | Amperes    |
| Amplification Factor                     |       | 12      |     |            |
| Grid-plate Transconductance (Ib = 60 ma) |       | 3600    |     | Micromhos  |
| Direct Interelectrode Capacitances:      |       |         |     |            |
| Grid-plate                               |       | 9.25    |     | uuf        |
| Input                                    |       | 6       |     | uuf        |
| Output                                   |       | 5       |     | uuf        |
| Base or Terminal Description             | Jumbo | 4-large | Pin |            |
| Frequency for Maximum Ratings            |       | 20      |     | Megacycles |
| Net Weight (approx)                      |       | 8       |     | Ounces     |
| Shipping Weight (approx)                 |       | 3       |     | Pounds     |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS A A-F AMPLIFIER AND MODULATOR

| D-c Plate Voltage                  | 750       | 1000 | 1250 | 1250 max | Volts  |
|------------------------------------|-----------|------|------|----------|--------|
| Plate Dissipation                  |           |      |      | 75  max  | Watts  |
| D-c Grid Voltage                   | -41       | -56  | -75  |          | Volts  |
| Peak Grid Swing (approx)           | 41        | 56   | 75   |          | Volts  |
| D-c Plate Current                  | .034      | .053 | .060 |          | Ampere |
| Plate Resistance                   | 4400      | 3800 | 3600 |          | Ohms   |
| Load Resistance                    | 8800      | 7600 | 9200 |          | Ohms   |
| Plate Power Output (5 per cent     |           |      |      |          |        |
| second harmonic)                   | 5.6       | 12   | 19.7 |          | Watts  |
| CLASS B A-F POWER AMPLIFIER (TWO   | TUBES):   |      |      |          |        |
| D-c Plate Voltage                  |           | 1000 | 1250 | 1250 max | Volts  |
| Max Signal Plate Current (per tube | e)*       |      |      | 0.175    | Ampere |
| D-c Maximum Signal Plate Input (pe | er tube)* |      |      | 220 max  | Watts  |
| Plate Dissipation (per tube)*      |           |      |      | 100 max  | Watts  |
| D-c Grid Voltage                   |           | -72  | -95  |          | Volts  |
| Peak A-f Grid Input Voltage        |           | 380  | 410  |          | Volts  |
| Zero Signal Plate Current          |           | .020 | .020 |          | Ampere |
| Maximum Signal Plate Current       |           | .320 | .320 |          | Ampere |
| Maximum Signal Driving Power (app: | rox)      | 7.5  | 8    |          | Watts  |
| Effective Load (plate-to-plate)    |           | 6900 | 9000 |          | Ohms   |
| Maximum Signal Plate Power Output  |           | 200  | 260  |          | Watts  |
|                                    |           |      |      |          |        |

| CLASS B R-F POWER AMPLIFIER<br>Carrier conditions per tube for use                                                                                                                                                  | with a                   | maximum                                          | modulation                                         | n factor of                                                          | 1.0                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Voltage<br>D-c Grid Current (approx)<br>Driving Power (approx)**                                    |                          | 1000<br>-72<br>0.130<br>125<br>5<br>10           | 1250<br>-95<br>0.106<br>125<br>1<br>7.5            | 1250 max<br>0.150 max<br>150 max<br>100 max                          | Volts<br>Volts<br>Ampere<br>Watts<br>Watts<br>Volts<br>Milliamperes<br>Watts |
| CLASS C R-F POWER AMPLIFIER AND OSC Carrier conditions per tube for use                                                                                                                                             | ILLATOR<br>with a        | R - PLATE<br>maximum                             | MODULATEI<br>modulatior                            | )<br>n factor of                                                     | 1.0                                                                          |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage (apirox)<br>Driving Power (approx)<br>Plate Power Output |                          | 750<br>-200<br>0.150<br>0.035<br>350<br>12<br>65 | 1000<br>-260<br>0.150<br>0.035<br>410<br>14<br>100 | 1000 max<br>-400 max<br>0.175 max<br>0.050 max<br>175 max<br>67 max  | Volts<br>Volts<br>Ampere<br>Ampere<br>Watts<br>Watts<br>Volts<br>Watts       |
| CLASS C R-F POWER AMPLIFIER AND OSC<br>Key-down conditions per tube with mo                                                                                                                                         | ILLATOF<br>dulatio       | ?<br>ont                                         |                                                    |                                                                      |                                                                              |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage                                                          | 750<br>135<br>150<br>018 | 1000<br>-175<br>.0.150<br>0.018                  | 1250<br>-225<br>0.150<br>0.018                     | 1250 max<br>-400 max<br>0.175 max<br>0.050 max<br>220 max<br>100 max | Volts<br>Volts<br>Ampere<br>Watts<br>Watts                                   |
| (approx)<br>Driving Power (approx)<br>Plate Power Output                                                                                                                                                            | 275<br>5<br>65           | 315<br>6<br>100                                  | 375<br>7<br>130                                    |                                                                      | Volts<br>Watts<br>Watts                                                      |

\* Averaged over, an audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

† Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-835 can be operated at maximum ratings in all classes of service at frequencies as high as 20 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL IN-FORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various-classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 20  | 40 | 100 | Mc       |
|--------------------------------------------------------------------------------------|-----|----|-----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: |     |    |     |          |
| Class B Telephony                                                                    | 100 | 85 | 70  | Per Cent |
| (Telephony, plate-modulated (Telegraphy                                              | 100 | 80 | 50  | Per Cent |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



### GENERAL 🛞 ELECTRIC

#### **Transmitting Tube GL-836 - - Description and Rating**

Description

The GL-836 is a half-wave, high-vacuum rectifier with two separate cathodes each of which is connected to its respective heater. The excellent voltage regulation characteristic of this tube is due to the close spacing of the cathode and plate. The double-cathode construction and the close spacing of the electrodes result in a tube with excellent voltage regulation characteristics.

#### **Technical Information**

These data are for reference only. For equipment design see the specifications. GENERAL CHARACTERISTICS

ELECTRICAL

| Cathode - Indirectly Heated                                        |                                 |            |
|--------------------------------------------------------------------|---------------------------------|------------|
| Voltage<br>Current<br>Heating Time (Before applying plate voltage) | 2.5 Volt<br>5.0 Ampe<br>40 Seco | res<br>nds |
| Tube Voltage Drop, Approximate (See Curve), Ib = 250 ma            | 45 Volt                         | S          |
| MECHANICAL                                                         |                                 |            |
| Type of Cooling - Convection (Maximum Ambient 60 C)                |                                 |            |
| Base Description<br>Cap                                            | Medium 4-Pin Bayo<br>Medi       | um         |
| Maximum Over-all Dimensions (See Outline)                          |                                 |            |
| Length<br>Diameter                                                 | 6 9/16 Inch<br>2 7/16 Inch      | les        |
| Mounting Position                                                  | Vertical or Horizon             | tal        |
| Net Weight, Approximate                                            | 3 Ounc                          | es         |

MAXIMUM RATINGS

RECTIFIER OPERATION

Peak Inverse Voltage Peak Plate Current Average Plate Current 5000 Volts 1.0 Ampere 0.25 Ampere



K-6966445 Average Plate Characteristics 3-22-41

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 8-43 (4M) Filing No. 8850

#### www.SteamPoweredRadio.Com

Supersedes GET-972

PRINTED

Watts

#### ELECTRONICS DEPARTMENT

### GENERAL 🛞 ELECTRIC

#### **Transmitting Tube GL-837 - - Description and Rating**

The 837 is a pentode transmitting tube of the heater-cathode type for use as an r-f amplifier, frequency-multiplier, oscillator, and suppressor-, grid- or plate-modulated amplifier. The plate connection is brought out through a separate seal at the top of the bulb to maintain low grid-plate capacitance. Neutralization is generally unnecessary in adequately shielded circuits. The suppressor and the special internal shield are connected to individual base pins. The 037 may be operated at maximum ratings at frequencies as high as 20 megacycles. The maximum plate dissipation is 12 watts.

These data are for reference only. For design information see the specifications.

#### CHARACTERISITCS AND RATINGS

| Heater Voltage, a-c or d-c                   | 12.6        | Volts     |
|----------------------------------------------|-------------|-----------|
| Heater Current                               | 0.7         | Ampere    |
| Transconductance, for plate current of 24 ma | 3400        | Micromhos |
| Direct Interelectrode Capacitances:          |             |           |
| Grid-plate, with external shielding          | 0.20 max    | µµſ       |
| Input                                        | 16          | μμſ       |
| Output                                       | 10          | µµſ       |
| Cap                                          | Small Met   | al        |
| Base                                         | edium 7-pin | Bayonet   |
| Net Weight, approx                           | 5           | Ounces    |
| Shipping Weight, approx                      | 3           | Pounds    |
| Installation and Operation                   | GEH-11      | .06       |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                             | Typic                  | al Opera          | tion    | Maximum<br>Ratings |              |
|-----------------------------------------------------------------------------|------------------------|-------------------|---------|--------------------|--------------|
| AS R-F POWER AMPLIFIER PENTODE - CLA<br>Carrier conditions per tube for use | SS B TELE<br>with a ma | PHONY<br>x modula | tion fa | ctor of 1.0        |              |
| D-c Plate Voltage                                                           | 400                    | 500               | 500     | 500                | Volts        |
| D-c Suppressor Voltage, grid No. 3                                          | 0                      | 0                 | 40      | 200                | Volts        |
| D-c Screen Voltage, grid No. 2                                              | 200                    | 200               | 200     | 200                | Volts        |
| D-c Grid Voltage, grid No. 1                                                | -25                    | -25               | -25     |                    | Volts        |
| D-c Plate Current                                                           | 35                     | 30                | 30      | 40                 | Milliamperes |
| D-c Screen Current                                                          | 10                     | 15                | 12      |                    | Milliamperes |
| D-c Grid Current, approx                                                    | 1                      | 0                 | С       |                    | Milliampere  |
| Peak R-f Grid Voltage                                                       | 28                     | 25                | 24      |                    | Volts        |
| Internal Shield                                                             | Conne                  | cted to           | cathode | at socket          |              |

16 Watts Plate Input 5 Suppressor Input Watts 5 Watts Screen Input 12 Watts Plate Dissipation Driving Power, approx\* 0.4 0.2 0.1 Watt

4

5

5.5

AS SUPPRESSOR-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage                  |  | 400 | 500 | 500   | Volts |
|------------------------------------|--|-----|-----|-------|-------|
| D-c Suppressor Voltage, grid No. 3 |  | -55 | -65 | - · · | Volts |
| D-c Grid Voltage**                 |  | -20 | -20 | -200  | Volts |
| D-c Screen Voltage, grid No. 2     |  |     |     | 200   | Volts |
| Peak R-f Grid Voltage              |  | 45  | 32  |       | Volts |
|                                    |  |     |     |       |       |

Power Output, approx

|                                                                                                                            | Typical C               | pera        | tion                 | Maximu<br>Rating   | im<br>JS |              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|----------------------|--------------------|----------|--------------|
| Peak A-f Suppressor Voltage                                                                                                |                         | 55          | 65                   |                    |          | Volts        |
| Internal Shield                                                                                                            | Connected               | to          | cathode              | at socke           | et       |              |
| D-c Plate Current                                                                                                          |                         | 35          | 30                   | 40                 |          | Milliamperes |
| D-c Screen Current                                                                                                         |                         | 37          | 23                   |                    |          | Milliamperes |
| D-c Grid Current, approx                                                                                                   |                         | 8           | 3.5                  | 8                  |          | Milliamperes |
| Plate Input                                                                                                                |                         |             |                      | 16                 |          | Watts        |
| Screen Input                                                                                                               |                         |             |                      | 8                  |          | Watts        |
| Plate Dissipation                                                                                                          |                         |             |                      | 12                 |          | Watts        |
| Screen Resistor                                                                                                            | 65                      | 00          | 14000                |                    |          | Ohms         |
| Grid Resistor                                                                                                              | 25                      | 00          | 5700                 |                    |          | Ohms         |
| Driving Power, approx                                                                                                      |                         | . 4         | 0.1                  |                    |          | Watt         |
| Power Output, approx                                                                                                       |                         | 4           | 5                    |                    |          | Watts        |
|                                                                                                                            |                         |             |                      |                    |          |              |
| AS GRID-MODULATED R-F POWER AMPLIFIER                                                                                      | PENTODE -               | CLAD        | otion fo             | LPHUNY             | 1 0      |              |
| Carrier conditions per tube for use wi                                                                                     | un a max m              | iodul       | acton 18             | 10101.01           | 1.0      | X            |
| D-c Plate Voltage                                                                                                          | 400 5                   | 00          | 500                  | 500                |          | Volts        |
| D-c Suppressor Voltage                                                                                                     | 0                       | 0           | 40                   | 200                |          | Volts        |
| D-c Screen Voltage                                                                                                         | 200 2                   | 00          | 200                  | 200                |          | Volts        |
| D-c Grid Voltage**                                                                                                         | -50 -                   | 45          | -43                  | -200               |          | Volts        |
| Peak R-f Grid Voltage                                                                                                      | 58                      | 48          | 44                   |                    |          | Volts        |
| Peak A-f Grid Voltage                                                                                                      | 25                      | 20          | 18                   |                    |          | Volts        |
| Internal Shield                                                                                                            | Connected               | to          | cathode              | at socke           | et       |              |
| D-c Plate Current                                                                                                          | 35                      | 30          | 30                   | 40                 |          | Milliamperes |
| D-c Screen Current                                                                                                         | 9                       | 7           | 6                    |                    |          | Milliamperes |
| D-c Grid Current, approx                                                                                                   | 1                       | 0           | 0                    |                    |          | Milliampere  |
| Plate Input                                                                                                                |                         |             |                      | 16                 |          | Watts        |
| Suppressor Input                                                                                                           |                         |             |                      | 5                  |          | Watts        |
| Screen Input                                                                                                               |                         |             |                      | 5                  |          | Watts        |
| Plate Dissipation                                                                                                          |                         |             |                      | 12                 |          | Watts        |
| Driving Power, approx*                                                                                                     | 0.5 0                   | .2          | 0.15                 |                    |          | Watt         |
| Power Output, approx                                                                                                       | 4                       | 5           | 5.5                  |                    | · · ·    | Watts        |
| AS PLATE-MODULATED R-F POWER AMPLIFIER<br>Carrier conditions per tube for use wi                                           | PENTODE -<br>th a max m | CLA         | SS C TEI<br>ation fa | EPHONY<br>actor of | 1.0      |              |
| D-c Plate Voltage                                                                                                          |                         |             | 400                  | 400                |          | Volts        |
| D-c Suppressor Voltage                                                                                                     |                         |             | 40                   | 200                |          | Volts        |
| D-c Screen Voltage                                                                                                         |                         |             | 140                  | 200                |          | Volts        |
| D-c Grid Voltage**                                                                                                         |                         |             | -40                  | -200               |          | Volts        |
| Peak R-f Grid Voltage                                                                                                      |                         |             | 60                   |                    |          | Volts        |
| Internal Shield                                                                                                            | Connected               | to          | cathode              | at socke           | et       |              |
| D-c Plate Current                                                                                                          |                         |             | 45                   | 50                 |          | Milliamperes |
| D-c Screen Current                                                                                                         |                         |             | 20                   | 0                  |          | Milliamperes |
| D-c Grid Current, approx                                                                                                   |                         |             | 5                    | 8                  |          | Milliamperes |
| Plate Input                                                                                                                |                         |             |                      | 20                 |          | Watts        |
| Suppressor Input                                                                                                           |                         |             |                      | 5                  |          | Watts        |
| Screen Input                                                                                                               |                         |             |                      | 5                  |          | Watts        |
| Plate Dissipation                                                                                                          |                         |             |                      | 8                  |          | Watts        |
| Screen Resistor#                                                                                                           |                         |             | 13000                |                    |          | Ohms         |
| Grid Resistor                                                                                                              |                         |             | 8000                 |                    |          | Ohms         |
| Driving Power, approx                                                                                                      |                         |             | 0.3                  |                    |          | Watt         |
| Power Output, approx                                                                                                       |                         |             | 11                   |                    |          | Watts        |
| AS PLATE-MODULATED R-F POWER AMPLIFIER<br>(Grids No. 2 and 3 connected together)<br>Carrier conditions per tube for use wi | TETRODE -<br>th a max m | CLA<br>odul | SS C TEI<br>ation fa | EPHONY<br>actor of | 1.0      |              |
| D - Ploto Voltoro                                                                                                          |                         |             | 100                  | 100                |          | Volta        |
| D-c riate voltage                                                                                                          |                         |             | 400                  | 400                |          | Volts        |
| D-c Screen voltage                                                                                                         |                         |             | 100                  | 200                |          | VOLUS        |
| Deck D & Code Valters                                                                                                      |                         |             | -70                  | -200               |          | VOLUS        |
| reak R-I Grid Voltage                                                                                                      |                         |             | TOO                  |                    |          | VOIUS        |

|                                                                                                                          | Typic                  | al Opera  | ation               | Ma<br>Ra | aximum<br>atings |                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|---------------------|----------|------------------|---------------------------------------|--|--|
| Internal Shield<br>D-c Plate Current                                                                                     | Conne                  | cted to   | cathode<br>45       | at s     | 50               | Milliamperes                          |  |  |
| D-c Screen Current<br>D-c Grid Current, approx<br>Plate Input                                                            |                        |           | 7                   |          | 8<br>20          | Milliamperes<br>Milliamperes<br>Watts |  |  |
| Screen Input, grids No. 2 and 3<br>Plate Dissipation<br>Screen Resistor##                                                |                        |           | 10,000              | 1        | 7.5<br>8         | Watts<br>Watts<br>Ohms                |  |  |
| Grid Resistor<br>Driving Power, approx<br>Power Output, approx                                                           |                        |           | 10,000<br>0.7<br>11 |          |                  | Ohms<br>Watt<br>Watts                 |  |  |
| AS R-F POWER AMPLIFIER AND OSCILLATOR PENTODE - CLASS C TELEGRAPHY<br>Key-down conditions per tube without modulation#   |                        |           |                     |          |                  |                                       |  |  |
| D-c Plate Voltage                                                                                                        | 400                    | 500       | 500                 | -        | 500              | Volts                                 |  |  |
| D-c Suppressor Voltage                                                                                                   | 0                      | 0         | 40                  | 2        | 200              | Volts                                 |  |  |
| D-c Screen Voltage                                                                                                       | 200                    | 200       | 200                 | 2        | 200              | Volts                                 |  |  |
| D-c Grid Voltage**                                                                                                       | -40                    | -85       | -75                 | -2       | 200              | Volts                                 |  |  |
| Peak R-f Grid Voltage                                                                                                    | 70                     | 120       | 100                 |          |                  | Volts                                 |  |  |
| Internal Shield                                                                                                          | Conne                  | cted to   | cathode             | at s     | socket           |                                       |  |  |
| D-c Plate Current                                                                                                        | 70                     | 60        | 60                  |          | 80               | Milliamperes                          |  |  |
| D-c Screen Current                                                                                                       | 32                     | 30        | 15                  |          |                  | Milliamperes                          |  |  |
| D-c Grid Current, approx                                                                                                 | 8                      | 8         | 4                   |          | 8                | Milliamperes                          |  |  |
| Plate Input                                                                                                              |                        |           |                     |          | 32               | Watts                                 |  |  |
| Suppressor Input                                                                                                         |                        |           |                     |          | 5                | Watts                                 |  |  |
| Screen Input                                                                                                             |                        |           |                     |          | 8                | Watts                                 |  |  |
| Plate Dissipation                                                                                                        |                        |           |                     |          | 12               | Watts                                 |  |  |
| Screen Resistor                                                                                                          | 6300                   | 10000     | 20000               |          |                  | Ohms                                  |  |  |
| Grid Resistor                                                                                                            | 5000                   | 10600     | 18700               |          |                  | Ohms                                  |  |  |
| Driving Power, approx                                                                                                    | 0.5                    | o.8       | 0.4                 |          |                  | Watt                                  |  |  |
| Power Output. approx                                                                                                     | 16                     | 20        | 22                  |          |                  | Watts                                 |  |  |
| AS R-F POWER AMPLIFIER AND OSCILLATOR<br>(Grids No. 2 and 3 connected together<br>Key-down conditions per tube without a | TETROD<br>)<br>modulat | DE - CLAS | SS C TEL            | EGRAI    | PHY              | Volto                                 |  |  |
| D-c Flate Voltage                                                                                                        |                        | 110       | 500                 |          | 200              | Volts                                 |  |  |
| D-c Screen voltage                                                                                                       |                        | 70        | 70                  |          | 200              | Volts                                 |  |  |
| D-c Grid Voltage**                                                                                                       |                        | -70       | -70                 | - 6      | 200              | Volts                                 |  |  |
| reak R-I Grid Voltage                                                                                                    | 0                      | 115       | 110                 | - + -    |                  | VOILS                                 |  |  |
| De Diete Gemeent                                                                                                         | Conne                  | cted to   | cathode             | ac       | Bocket           |                                       |  |  |
| D-c Plate Current                                                                                                        |                        | 75        | 00                  |          | 00               | Milliamperes                          |  |  |
| D-c Screen Current                                                                                                       |                        | 25        | 15                  |          | 0                | Millismperes                          |  |  |
| D-c Grid Current, approx                                                                                                 |                        | 0         | 0                   |          | 0                | Milliamperes                          |  |  |
| Plate Input                                                                                                              |                        |           |                     |          | 32               | Watts                                 |  |  |
| Screen input, grias No. 2 and 3                                                                                          |                        |           |                     |          | 0                | Watts                                 |  |  |
| Plate Dissipation                                                                                                        |                        | 11(00     | 09                  |          | 15               | Watts                                 |  |  |
| Screen Resistor                                                                                                          |                        | 11000     | 20000               |          |                  | Ohms                                  |  |  |
| Grid Resistor                                                                                                            |                        | 0700      | 0700                |          |                  | Ohms                                  |  |  |
| Driving Power, approx                                                                                                    |                        | 0.75      | 0.7                 |          |                  | Watt                                  |  |  |
| Power Output, approx                                                                                                     |                        | . 18      | 20                  |          |                  | Watts                                 |  |  |

\* At crest of audio-frequency cycle with modulation factor of 1.0.

\*\* The total effective grid-circuit resistance should not exceed 25000 ohms.

# Connected to modulated plate-voltage supply.

## Connected to unmodulated plate-voltage supply.

# Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions. The maximum ratings apply only at frequencies below 20 megacycles. For operation at higher frequencies, adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| Frequency, Megacycles                                                                              | 20                | 40             | 60             |
|----------------------------------------------------------------------------------------------------|-------------------|----------------|----------------|
| Percentage of Maximum)<br>Rated Plate Voltage )<br>and Plate Input                                 |                   |                |                |
| Class B, Class C Grid- or<br>Suppressor-modulated<br>Class C Plate-modulated<br>Class C Telegraphy | 100<br>100<br>100 | 90<br>76<br>76 | 84<br>62<br>62 |









l-44 (7M) Filing No. 8850

Supersedes GET-750

GENERAL, ELECTRIC COMPANY, SCHENECTADY, N. Y.

### GENERAL 🚱 ELECTRIC

#### **Transmitting Tube GL-838 - - Description and Rating**

#### **Technical Information**

The  $8_{3}8$ , a high-mu, three-electrode tube, is especially designed for use as a zerobias Class B audio-frequency power amplifier. The grid is designed so that the amplification factor of the tube varies with the amplitude of the input signal. This feature is particularly valuable in connection with the design of Class B amplifiers since it facilitates their ability to give high output with low distortion.

#### GENERAL CHARACTERISTICS

These data are for reference use only. For design information see the specifications.

| Filament Voltage<br>Filament Current    |       | 10.0<br>3.25 | Volts<br>Amperes |
|-----------------------------------------|-------|--------------|------------------|
| Direct Interelectrode Capacitances:     |       |              |                  |
| Grid-plate                              |       | 8            | µµſ              |
| Input                                   |       | 6.5          | ннī              |
| Output                                  |       | 5            | μμſ              |
| Base Description                        | Jumbo | 4-large Pir  | 1                |
| Frequency for Maximum Ratings           |       | 30           | Mc               |
| Net Weight, approx                      |       | 8            | Oz               |
| Shipping Weight, approx                 |       | 7            | lb               |
| Installation and Operating Instructions |       | GEH-980      | )                |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| CLASS B A-F POWER AMPLIFIER (TWO TUBES):                                                                                                  | Typ:<br>Opera | ical<br>ation | Maximum<br>Rating         |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------------|-----------------------------------------|
| D-c Plate Voltage<br>Maximum Signal Plate Current, per tube*<br>D-c Maximum Signal Plate Input, per tube*<br>Plate Dissipation, per tube* | 1000          | 1250          | 1250<br>175<br>220<br>100 | Volts<br>Milliamperes<br>Watts<br>Watts |
| D-c Grid Voltage                                                                                                                          | 0             | 0             |                           | Volts                                   |
| Peak A-f Grid Input Voltage                                                                                                               | 200           | 200           |                           | Volts                                   |
| Zero Signal Plate Current                                                                                                                 | 106           | 148           |                           | Milliamperes                            |
| Maximum Signal Plate Current                                                                                                              | 320           | 320           |                           | Milliamperes                            |
| Maximum Signal Plate Input*                                                                                                               | 320           | 400           |                           | Watts                                   |
| Maximum Signal Driving Power, approx                                                                                                      | 7             | 7.5           |                           | Watts                                   |
| Effective Load, plate-to-plate                                                                                                            | 6900          | 9000          |                           | Ohms                                    |
| Maximum Signal Plate Power Output                                                                                                         | 200           | 260           |                           | Watts                                   |
| CLASS B R-F POWER AMPLIFIER                                                                                                               |               |               |                           |                                         |

Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage           | 1000 | 1250 | 1250 | Volts        |
|-----------------------------|------|------|------|--------------|
| D-c Grid Voltage            | 0    | 0    |      | Volts        |
| D-c Plate Current           | 130  | 106  | 150  | Milliamperes |
| Plate Input                 |      |      | 150  | Watts        |
| Plate Dissipation           |      |      | 100  | Watts        |
| Peak R-f Grid Input Voltage | 70   | 60   |      | Volts        |
| D-c Grid Current, approx    | 15   | 15   |      | Milliamperes |
| Driving Power, approx**     | 8    | 6    |      | Watts        |
| Plate Power Output          | 40   | 42.5 |      | Watts        |

\* Averaged over any audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

|                                                                                                                                                                                                                  | Typ:<br>Opera                               | ical<br>ation                                 | Maximum<br>Rating                      |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>Carrier conditions per tube for use with                                                                                                                           | R - PLATE<br>a max modu                     | MODULATED<br>ulation facto                    | r of 1.0                               |                                                                                             |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output | 750<br>-100<br>150<br>60<br>220<br>14<br>65 | 1000<br>-135<br>150<br>60<br>255<br>16<br>100 | 1000<br>-400<br>175<br>70<br>175<br>67 | Volts<br>Volts<br>Milliamperes<br>Matliamperes<br>Watts<br>Volts<br>Watts<br>Watts<br>Watts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>Key-down conditions per tube without modu                                                                                                                          | R<br>lation <del>†</del>                    |                                               |                                        |                                                                                             |
| D-c Plate Voltage 7<br>D-c Grid Voltage -<br>D-c Plate Current 1<br>D-c Grid Current, approx 7<br>Plate Input Plate Dissipation                                                                                  | 50 10<br>80 -<br>50 1<br>30                 | 00 1250<br>85 -90<br>50 150<br>30 30          | 1250<br>-400<br>175<br>70<br>220       | Volts<br>Volts<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts                            |

+ Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

195

100

6

200

130

6

Volts

Watts

Watts

190

6

65

GL-838 can be operated at maximum ratings in all classes of service at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under CHARACTERISTICS). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 120 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                         | 30  | 50 | 120 | Mc       |
|-----------------------------------|-----|----|-----|----------|
| Maximum Permissible Percentage of |     |    |     |          |
| Maximum Rated Plate Voltage and   |     |    |     |          |
| Plate Input:                      |     |    |     |          |
| Class B Telephony                 | 100 | 85 | 73  | Per Cent |
| Class C (Telephony<br>(Telegraphy | 100 | 75 | 50  | Per Cent |

Peak R-f Grid Input Voltage, approx

Driving Power, approx

Plate Power Output



If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com Outline Transmitting Tube GL-838 K-4909036



2-42 (4M) Filing No. 8850

## ELECTRONICS DEPARTMENT

#### Transmitting Tube GL-842--Description and Rating

The GL-842 is a three-electrode, low-millimicron tube, containing a filament of the thoriated-tungsten type. Because this tube is primarily used as a Class A power amplifier, it is useful as a modulator in low-power transmitting equipment.

#### TECHNICAL INFORMATION

| GENERAL DESIGN                                        |  |   |        |                 |                             |  |
|-------------------------------------------------------|--|---|--------|-----------------|-----------------------------|--|
| Filement Voltage                                      |  |   |        | 7.5             | Volts                       |  |
| Filament Current                                      |  |   |        | 1.25            | Amperes                     |  |
| Direct Interelectrode Capacitances:                   |  |   |        |                 | -                           |  |
| Grid-plate<br>Grid-filament<br>Plate-filament         |  |   |        | 7<br>4<br>3     | uuf<br>uuf<br>uuf           |  |
| Base<br>Net Weight, Approx<br>Shipping Weight, Approx |  | 1 | Medium | 4-pin<br>3<br>3 | Bayonet<br>Ounces<br>Pounds |  |
| Installation and Operation                            |  |   | GE     | H-980           |                             |  |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS As A-F Power Amplifier and Modulator - Class A

|                          | Typical<br>ing Cond | Operat-<br>litions | Maximum<br>Ratings |              |
|--------------------------|---------------------|--------------------|--------------------|--------------|
| D-c Plate Voltage        | 350                 | 425                | 425                | Volts        |
| Plate Dissipation        |                     |                    | 12                 | Watts        |
| D-c Grid Voltage*        | -72                 | -100               |                    | Volts        |
| Peak A-F Grid Voltage    | 67                  | 95                 |                    | Volts        |
| D-c Plate Current        | 34                  | 28                 |                    | Milliamperes |
| Plate Resistance         | 2400                | 2500               |                    | Ohms         |
| Amplification Factor     | 3                   | 3                  |                    |              |
| Transconductance         | 1250                | 1200               |                    | Micromhos    |
| Load Resistance          | 5000                | 8000               |                    | Ohms         |
| Cathode-Bias Resistor    | 2120                | 3570               |                    | Ohms         |
| Undistorted Power Output | 2.1                 | 3.0                |                    | Watts        |

\* Grid voltages are given with respect to the mid-point of filament operated on alternating current. If direct current is used, each stated value of grid voltage should be decreased by 5 volts and the circuit returns made to the negative end of the filament.











GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-44 (7M) Filing No 8850 www.SteamPoweredRadio.Com



#### **Transmitting Tube GL-843 - - Description and Rating**

The 843 is a three-electrode power tube of the heater-cathode type. It is designed for use as an oscillator, a-f power amplifier, or r-f power amplifier.

CHARACTERISTICS

| Heater Voltage (a-c or d-c) | 2.5    | Volts   |
|-----------------------------|--------|---------|
| Heater Current              | 2.5    | Amperes |
| Amplification Factor        | 7.7    |         |
| Grid-plate Capacitance      | 6      | цµf     |
| Grid-cathode Capacitance    | 5      | цµf     |
| Plate-cathode Capacitance   | 5      | цµf     |
| Base                        | Medium | 5-pin   |
|                             |        |         |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AS A-F POWER AMPLIFIER - CLASS A

|      | 425 max                                                 | Volts                                                                                                                    |
|------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|      | 12 max                                                  | Watts                                                                                                                    |
|      |                                                         |                                                                                                                          |
| 350  | 425                                                     | Volts                                                                                                                    |
| -25  | -35                                                     | Volts                                                                                                                    |
| 25   | 35                                                      | Volts                                                                                                                    |
| 25   | 25                                                      | Milliamperes                                                                                                             |
| 7.7  | 7.7                                                     |                                                                                                                          |
| 4700 | 4800                                                    | Ohms                                                                                                                     |
| 1700 | 1600                                                    | Micromhos                                                                                                                |
| 9500 | 12000                                                   | Ohms                                                                                                                     |
| 0.95 | 1.6                                                     | Watts                                                                                                                    |
|      | 350<br>-25<br>25<br>7.7<br>4700<br>1700<br>9500<br>0.95 | 425 max<br>12 max<br>350 425<br>-25 -35<br>25 35<br>25 25<br>7.7 7.7<br>4700 4800<br>1700 1600<br>9500 12000<br>0.95 1.6 |

AS R-F POWER AMPLIFIER - CLASS B TELEPHONY

Carrier conditions; for use with a modulation factor up to 1.0

| D-c Plate Voltage             |     | 450 max | Volts        |
|-------------------------------|-----|---------|--------------|
| D-c Plate Current             |     | 30 max  | Milliamperes |
| Plate Dissipation             |     | 15 max  | Watts        |
| R-f Grid Current              |     | 4 max   | Amperes      |
| Typical Operation:            |     |         |              |
| D-c Plate Voltage             | 350 | 450     | Volts        |
| Grid Voltage (approx)         | -40 | -50     | Volts        |
| D-c Plate Current             | 25  | 25      | Milliamperes |
| Peak Power Output (approx)    | 8   | 12      | Watts        |
| Carrier Power Output (approx) | 2   | 3       | Watts        |

AS PLATE-MODULATED R-F POWER AMPLIFIER - CLASS C TELEPHONY Carrier conditions; for use with a modulation factor up to 1.0

| D-c Plate Voltage     |      | 350 ma | ax Volts        |
|-----------------------|------|--------|-----------------|
| D-c Plate Current     |      | 40 m   | ax Milliamperes |
| Plate Dissipation     |      | 10 m   | ax Watts        |
| R-f Grid Current      |      | 4 m    | ax Amperes      |
| D-c Grid Current      |      | 7.5 m  | ax Milliamperes |
| Typical Operation:    |      | 1.2    |                 |
| D-c Plate Voltage     | 250  | 350    | Volts           |
| Grid Voltage (approx) | -100 | -140   | Volts           |
| D-c Plate Current     | 30   | 30     | Milliamperes    |
| D-c Grid Current*     | 7    | 7      | Milliamperes    |
| Driving Power*        | 1.3  | 1.6    | Watts           |
| Power Output (approx) | 3    | 5      | Watts           |

AS R-F POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY Key-down conditions

| D-c Plate Voltage     |      | 450 max | Volts        |
|-----------------------|------|---------|--------------|
| D-c Plate Current     |      | 40 max  | Milliamperes |
| Plate Dissipation     |      | 15 max  | Watts        |
| R-f Grid Current      |      | 5 max   | Amperes      |
| D-c Grid Current      |      | 7.5 max | Milliamperes |
| Typical Operation:    |      |         |              |
| D-c Plate Voltage     | 350  | 450     | Volts        |
| Grid Voltage (approx) | -100 | -149    | Volts        |
| D-c Plate Current     | 30   | 30      | Milliamperes |
| D-c Grid Current*     | 5    | 5       | Milliamperes |
| Driving Power*        | 0.8  | 1.0     | Watt         |
| Power Output (approx) | 5    | 7.5     | Watts        |

\* Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driving stage should have a tank circuit of good regulation and should be capable of delivering considerably more than the required driving power.



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

11-39 (2500) Filing No. 8850

www.SteamPoweredRadio.Com

## GENERAL 🍘 ELECTRIC

#### **Transmitting Tube GL-845 -- Description and Rating**

The GL-845 is a three-electrode vacuum tube especially adapted to use as a Class A power amplifier or modulator.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

| GENERAL CHARACTERISTICS:                |      |
|-----------------------------------------|------|
| Filament Voltage, volts                 | 10   |
| Filament Current, amperes               | 3.25 |
| Amplification Factor                    | 5.3  |
| Grid-plate Transconductance, mmhos      |      |
| Ib = 65 28                              | 300  |
| Direct Interelectrode Capacitances, µµf |      |
| Grid-plate 15                           | 3.5  |
| Input                                   | 5.0  |
| Output                                  | 5.5  |
| Base or Terminal Description            |      |
| Jumbo, 4-Large 1                        | Pin  |
| Net Weight, oz approx                   | 8    |
| Shipping Weight, 1b approx              | 7    |
| Installation and Operation              |      |
| Instructions GEH-                       | 930  |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                                                          | Typ<br>Opera             | Max<br>Rat-<br>ings       |                            |             |
|----------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|----------------------------|-------------|
| CLASS A A-F AMPLIFIER                                                                                    | AND I                    | MODUL                     | ATOR:                      |             |
| D-c Plate Voltage, v<br>Plate Dissipation, w<br>D-c Grid Voltage, v<br>Peak Grid Swing.                  | 750<br><br>-98           | 1000<br>-145              | 1250<br><br>-195           | 1250<br>100 |
| approx v<br>D-c Plate Current, ma<br>Plate Resistance,ohms<br>Load Resistance,ohms<br>Plate Power Output | 93<br>95<br>1700<br>3400 | 140<br>90<br>1700<br>6000 | 190<br>80<br>1700<br>11000 |             |
| (5% Second Har-<br>monic), w                                                                             | 15                       | 24                        | 30                         |             |

CLASS AB, A-F POWER AMPLIFIER AND MODULATOR

|                                           | Opera | tion | Ratings |       |
|-------------------------------------------|-------|------|---------|-------|
| D-c Plate Voltage                         | 1000  | 1250 | 1250    | Volts |
| Plate Dissipation                         |       |      | 100     | Watts |
| D-c Grid Voltage                          | -175  | -225 | -400    | Volts |
| D-c Plate Current                         |       |      | 120     | Ma    |
| Peak A-F Grid-to-Grid Voltage             | 340   | 440  |         | Volts |
| Zero Signal D-c Plate Current             | 40    | 40   |         | Ma    |
| Max Signal D-c Plate Current              | 230   | 240  |         | Ma    |
| Load Resistance                           | 1150  | 1650 |         | Ohms  |
| Effective Load Resistance, plate-to-plate | 4600  | 6600 |         | Ohms  |
| Plate Power Output, approx                | 75    | 115  |         | Watts |

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 9-42 (5M) Filing No. 8850

Typical

Anomation

#### www.SteamPoweredRadio.Com







Outline Transmitting Tube GL-845 K-4909036 4-4-40

Max

## GENERAL 🍪 ELECTRIC

#### **Transmitting Tube GL-846 - - Description and Rating**

The GL-846 is a three-electrode, water-cooled vacuum tube designed for use as a radio-frequency amplifier and oscillator, particularly at the higher radio frequencies.

#### **Technical Information**

(These data for reference only. For equipment design see specifications.)

GENERAL CHARACTERISTICS

ELECTRICAL

| Filament - Pure Tungsten<br>Voltage<br>Current                                                                                    | 11<br>51        | Volts<br>Amperes   |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| Average Characteristics, Eb = 6500, Ib = 0.25 Amp, Ef = 11<br>Grid Voltage<br>Amplification Factor<br>Grid-plate Transconductance | 0<br>40<br>2160 | Volts<br>Micromhos |
| Direct Interelectrode Capacitances<br>Grid-plate<br>Input<br>Output                                                               | 9<br>6.5<br>1.5 | рні<br>Нні<br>Пні  |
| Frequency for Maximum Ratings                                                                                                     | 50              | Megacycles         |
| MECHANICAL                                                                                                                        |                 |                    |
| Type of Cooling<br>Water Flow 2-4 Gallons Per Minute<br>Maximum Outlet Temperature 70 C                                           |                 | Water              |
| Mounting Position                                                                                                                 | Vertical,       | Anode Down         |
| Gasket Cat. No. 5182028P3                                                                                                         |                 |                    |
| Maximum Over-all Dimensions (See Outline)<br>Length<br>Diameter                                                                   | 9 1/2<br>2 3/4  | Inches             |
| Net Weight, Approximately                                                                                                         | 1 1/8           | Pounds             |
| Installation and Operation Instruction                                                                                            | GEH             | -1152              |

CLASS B RADIO FREQUENCY POWER AMPLIFIER (Carrier conditions per tube for use with a max modulation factor of 1.0)

|                                     | Typical Operation | Maximum Ratings |
|-------------------------------------|-------------------|-----------------|
| D-c Plate Voltage                   | 7000              | 7500 Volts      |
| D-c Grid Voltage (Grid No. 1)       | -100              | Volts           |
| D-c Plate Current                   | 0.45              | 0.5 Volts       |
| Plate Input                         |                   | 3.75 Kilowatts  |
| Plate Dissipation                   |                   | 2.5 Kilowatts   |
| Peak R-F Grid Input Voltage         | 640               | Volts           |
| Driving Power X, Approximately      | 175               | Watts           |
| Plate Power Output, Approximately   | 1                 | Kilowatt        |
| X at Crest of Audio-Frequency Cycle |                   |                 |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED (Carrier conditions per tube for use with a max modulation factor of 1.0)

|                               | Typi | cal Operat: | ion  | Maximum Ratings |
|-------------------------------|------|-------------|------|-----------------|
| D-c Plate Voltage             | 4000 | 5000        | 6000 | 6000 Volts      |
| D-c Grid Voltage (Grid No. 1) | -850 | -900        | -950 | -1000 Volts     |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



K-7050624

Characteristics for Transmitting Tube GL-846

6-19-39

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED (Carrier conditions per tube for use with a max modulation factor of 1.0)

|                                 | Typ  | ical Opera | Maximum Ratings |                |
|---------------------------------|------|------------|-----------------|----------------|
| D-c Plate Current               | 0.3  | 0.4        | 0.5             | 0.5 Ampere     |
| D-c Grid Current, Approximately | 0.08 | 0.1        | 0.125           | 0.15 Ampere    |
| Plate Input                     |      |            |                 | 3 Kilowatts    |
| Plate Dissipation               |      |            |                 | 1.66 Kilowatts |
| Peak R-F Grid Input Voltage     | 1600 | 1700       | 1950            | Volts          |
| Driving Power                   | 125  | 175        | 200             | Watts          |
| Plate Power Output              | 0.9  | 1.5        | 2.25            | Kilowatts      |

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR (Key down conditions per tube without modulation)\*

|                                   | Typical Operation |       |      | Maximum 1 | Ratings   |
|-----------------------------------|-------------------|-------|------|-----------|-----------|
| D-c Plate Voltage                 | 5000              | 6000  | 7000 | 7500      | Volts     |
| D-c Grid Voltage (Grid No, 1)     | -800              | -850  | -900 | -1000     | Volts     |
| D-c Plate Current                 | 0.6               | 0.75  | 0.9  | 1.0       | Ampere    |
| D-c Grid Current, Approximately   | 0.11              | 0.125 | 0.14 | 0.15      | Ampere    |
| Plate Input                       |                   |       |      | 7.5       | Kilowatts |
| Plate Dissipation                 |                   |       |      | 2.5       | Kilowatts |
| Peak R-F Grid Input Voltage,      |                   |       |      |           |           |
| Approximately                     | 1850              | 2040  | 2300 |           | Volts     |
| Driving Power, Approximately      | 175               | 235   | 300  |           | Watts     |
| Plate Power Output, Approximately | 2                 | 3     | 4.25 |           | Kilowatts |

\* Modulation, essentially negative, may be used if the positive peak of the Audio-Frequency envelope does not exceed 115 per cent of the carrier conditions.

The GL-846 can be operated at frequencies as high as 50 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 150 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                         | 50  | 100 | 150 Megacycles |
|-----------------------------------|-----|-----|----------------|
| PERCENTAGE OF MAXIMUM RATED PLATE |     |     |                |
| VOLTAGE AND PLATE INPUT           |     |     |                |
| Class B                           | 100 | 82  | 73 Per Cent    |
| Class C Plate Modulated           | 100 | 75  | 60 Per Cent    |
| Class C Unmodulated               | 100 | 75  | 50 Per Cent    |
|                                   |     |     |                |

#### APPLICATION NOTES

Plate Series Protective Resistors (see paragraph describing plate circuit under Installation in the Instructions.)

| Series Resistor, ohms                        | 120 | 75 | 100 |
|----------------------------------------------|-----|----|-----|
| Maximum Power Output of Rectifier, kilowatts | 6.4 | 16 | 40  |







Typical Plate-grid Transfer Characteristic for Transmitting Tube GL-846 K-7050590 6-21-34

Outline Transmitting Tube GL-846 K-4903580 5-15-39

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

7-43 (4M) Filing No. 8850

www.SteamPoweredRadio.Com

Supersedes GET-603A

## GENERAL DE ELECTRIC

#### Transmitting Tube GL-849—Description and Rating

TECHNICAL INFORMATION

The GL-849 is a three-electrode, general-purpose vacuum tube especially suited for use as a Class A audio-frequency power amplifier or modulator.

These data are for reference only. For design information, see the specifications.

#### CHARACTERISTICS AND RATINGS

| Filament Voltage                         | 11   | Volts      |
|------------------------------------------|------|------------|
| Filament Current                         | 5    | Amperes    |
| Amplification Factor $(I_{\rm b} = 0.1)$ | 19   |            |
| Grid-plate Transconductance              | 6000 | Micromhos  |
| Direct Interelectrode Capacitances:      |      |            |
| Grid-plate                               | 33.5 | MMI        |
| Input                                    | 17   | μµf        |
| Output                                   | 3    | μµf        |
| Base                                     | 3503 | • •        |
| Frequency for Maximum Ratings            | 3    | Megacycles |
| Net Weight (approx)                      | 3    | Pounds     |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

#### CLASS A A-F AMPLIFIER AND MODULATOR

| D-c Plate Voltage                 | 2000     | 2500     | 3000     | 3000 max      | Volts  |
|-----------------------------------|----------|----------|----------|---------------|--------|
| Plate Dissipation                 | 7)       | 104      | 132      | JOU max       | Volta  |
| D-c Grid Voltage                  | -14      | -104     | -172     |               | Volte  |
| Peak Grid Swing (approx)          | 0 135    | 90       | 0 100    |               | Ampere |
| D-c Plate Current                 | 2050     | 3150     | 3250     |               | Ohma   |
| Flate Resistance                  | 6000     | 12000    | 18000    |               | Ohms   |
| Load Resistance                   | 0000     | 12000    | 10000    |               | OTIMS  |
| (5% second harmonic)              | 58       | 81       | 100      |               | Watts  |
| CLASS B A-F POWER AMPLIFIER (TWO  | TUBES)   |          |          |               |        |
| D-c Plate Voltage                 | 2000     | 2500     | 3000     | 3000 max      | Volts  |
| Max Signal Plate Current(per tube | )*       |          |          | 0.35 max      | Ampere |
| D-c Max Signal Plate Input        |          |          |          |               |        |
| (per tube)*                       |          |          |          | 825 max       | Watts  |
| Plate Dissipation (per tube)*     |          |          |          | 300 max       | Watts  |
| D-c Grid Voltage                  | -105     | -130     | -155     |               | Volts  |
| Peak A-f Grid Input Voltage       | 450      | 480      | 500      |               | Volts  |
| Zero Signal Plate Current         | 0.014    | 0.02     | 0.024    |               | Ampere |
| Max Signal Plate Current          | 0.65     | 0.56     | 0.52     |               | Watts  |
| Max Signal Plate Input*           | 1300     | 1400     | 1560     |               | Watts  |
| Max Signal Driving Power (approx) | 16       | 14       | 12       |               | Watts  |
| Effective Load Resistance         |          |          | 14.1     |               |        |
| (plate-to-plate)                  | 6400     | 10400    | 12800    |               | Ohms   |
| Max Signal Plate Power Output     | 900      | 1000     | 1100     |               | Watts  |
| CLASS B R-F POWER AMPLIFIER       |          |          |          |               |        |
| Carrier conditions per tube for u | ise with | a max mo | dulation | factor of 1.0 |        |
| D-c Plate Voltage                 | 1500     | 2000     | 2500     | 2500 max      | Volts  |
| D-c Grid Voltage                  | -70      | -95      | -125     |               | Volts  |
| D-c Plate Current                 | 0.320    | 0.265    | 0.216    | 0.35 max      | Ampere |
| Plate Input                       |          |          |          | 600 max       | Watts  |
| Plate Dissipation                 |          |          |          | 400 max       | Watts  |
| Peak R-f Grid Input Voltage       | 280      | 280      | 280      |               | Volts  |
| Driving Power (approx)**          | 18       | 15       | 12       |               | Watts  |
| Plate Power Output                | 150      | 170      | 180      |               | Watts  |

#### CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage                    | 1500     | 2000 | 2000 max  | Volts  |
|--------------------------------------|----------|------|-----------|--------|
| D-c Grid Voltage                     | -250     | -300 | -500 max  | Volts  |
| D-c Plate Current                    | 0.3      | 0.3  | 0.35 max  | Ampere |
| D-c Grid Current (approx)            | 0.035    | 0.03 | 0.125 max | Ampere |
| Plate Input                          |          |      | 700 max   | Watts  |
| Plate Dissipation                    |          |      | 270 max   | Watts  |
| Peak R-f Grid Input Voltage (approx) | 400      | 450  |           | Volts  |
| Driving Power (approx)               | 14<br>14 | 14   |           | Watts  |
| Plate Power Output                   | 300      | 425  |           | Watts  |
|                                      |          |      |           |        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation #

| D-c Plate Voltage           | 1500  | 2000  | 2500 | 2500 max  | Volts  |
|-----------------------------|-------|-------|------|-----------|--------|
| D-c Grid Voltage            | -175  | -200  | -250 | -500 max  | Volts  |
| D-c Plate Current           | 0.3   | 0.3   | 0.3  | 0.35 max  | Ampere |
| D-c Grid Current (approx)   | 0.035 | 0.025 | 0.02 | 0.125 max | Ampere |
| Plate Input                 |       |       |      | 875 max   | Watts  |
| Plate Dissipation           |       |       |      | 400 max   | Watts  |
| Peak R-f Grid Input Voltage |       |       |      |           |        |
| (approx)                    | 310   | 325   | 360  |           | Volts  |
| Driving Power (approx)      | 11    | 9     | 8    |           | Watts  |
| Plate Power Output          | 300   | 425   | 560  |           | Watts  |

\* Averaged over any audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-849 can be operated at maximum ratings in all classes of service at frequencies as high as 3 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 30 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                            | 3   | 10 | 30      | Mc       |
|----------------------------------------------------------------------|-----|----|---------|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND |     |    |         |          |
| PLATE INPUT:                                                         |     | ~  | <i></i> |          |
| Class B telephony                                                    | 100 | 84 | 69      | Per cent |
| Class C (telephony, plate-modulated (telegraphy                      | 100 | 75 | 50      | Per cent |



Average Plate Characteristics for Transmitting Tube GL-849 K-7000102 6-3-35





If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

Outline Transmitting Tube GL-849K-384600412-13-39



10-43 (5M) Filing No. 8850

www.SteamPoweredRadio.Com

## ELECTRONICS DEPARTMENT

#### Transmitting Tube GL-851---Description and Rating

The GL-851 is a three-electrode, general-purpose electronic tube.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| Filament Voltage                     | 11      | max | Volts      |
|--------------------------------------|---------|-----|------------|
| Filament Current                     | 15.5    | max | Amperes    |
| Amplification Factor, $I_b = 300$ ma | 20.5    | r.  |            |
| Grid-plate Transconductance          | 15000   | max | Micromhos  |
| Direct Interelectrode Capacitances:  |         |     |            |
| Grid Plate                           | 47      | max | uuf        |
| Input                                | 25.5    | max | uuf        |
| Output                               | 4.5     | max | uuf        |
| Base                                 | 3117    |     |            |
| Frequency for Max Ratings            |         | max | Megacycles |
| New Weight, approx                   |         |     | Pounds     |
| Shipping Weight, approx              | 9       | d.  | Pounds     |
| Installation and Operation           | GEH-980 |     |            |
|                                      |         |     |            |

MAXIMUM RATING AND TYPICAL OPERATING CONDITIONS

|                                                |       | al Oper | Maximum<br>Ratings |             |                |
|------------------------------------------------|-------|---------|--------------------|-------------|----------------|
| CLASS A A-F AMPLIFIER AND MODULATOR            |       |         |                    |             |                |
| D-c Plate Voltage<br>Plate Dissipation         | 1500  | 2000    | 2500               | 2500<br>600 | Volts<br>Watts |
| D-c Grid Voltage                               | -49   | -65     | -92                |             | Volts          |
| Peak Grid Swing, approx                        | 44    | 60      | 87                 |             | Volts          |
| D-c Plate Current                              | 0.175 | 0.270   | 0.240              |             | Ampere         |
| Plate Resistance                               | 1800  | 1500    | 1600               |             | Ohms           |
| Load Resistance                                | 3700  | 3100    | 5000               |             | Ohms           |
| Plate Power Output, 5 per cent second harmonic | 46    | 100     | 160                |             | Watts          |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)        |       |         |                    |             |                |
| D-c Plate Voltage                              | 2000  | 2500    | 3000 '             | 3000        | Volts          |
| Max Signal Plate Current, per tube*            |       |         |                    | 1           | Ampere         |
| D-c Max Signal Plate Input, per tube*          |       |         |                    | 2250        | Watts          |
| Plate Dissipation, per tube*                   | 0-    |         |                    | 750         | Watts          |
| D-c Grid Voltage                               | -85   | -111    | -135               |             | Volts          |
| Peak A-f Grid Input Voltage                    | 250   | 245     | 245                |             | Volts          |
| Zero Signal Plate Current                      | 0.12  | 0.12    | 0.11               |             | Ampere         |
| Max Signal Plate Current                       | 1.7   | 1.4     | 1.2                |             | Amperes        |
| Max Signal Plate Input*                        | 3400  | 3500    | 3600               |             | Watts          |
| Max Signal Driving Power, approx               | 20    | 12      | 6                  |             | Watts          |
| Effective Load Resistance, plate-to-plate      | 2600  | 4000    | 5600               |             | Ohms           |
| Max Signal Plate Power Output                  | 2200  | 2300    | 2400               |             | Watts          |
Typical Operation Maximum

Ratings

CLASS B R-F POWER AMPLIFIER Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage           | 1500<br>-60 | 2000, | 2500<br>-110 | 2500  | Volts<br>Volts |
|-----------------------------|-------------|-------|--------------|-------|----------------|
| D-c Grid Voltage            | 0 62        | 0 475 | 0.39         | 0.750 | Ampere         |
| D-c Plate Current           | 0.02        | 0.412 | 0.))         | 1100  | Watta          |
| Plate Input                 |             |       |              | 750   | Watte          |
| Plate Dissipation           |             | 000   | 070          | 150   | Walta          |
| Peak R-f Grid Input Voltage | 300         | 280   | 270          |       | VOIUS          |
| Driving Power, approxt      | 40          | 25    | 20           | •     | watts          |
| Plate Power Output          | 275         | 300   | 325          |       | Watts          |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage                                            | 1500 | 2000  | 2000        | Volts                    |
|--------------------------------------------------------------|------|-------|-------------|--------------------------|
| D-c Grid Voltage                                             | -250 | -300  | -500        | Volts                    |
| D-c Plate Current                                            | 0.9  | 0.85  | 1           | Ampere                   |
| D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation | 0.15 | 0.125 | 1800<br>500 | Ampere<br>Watts<br>Watts |
| Peak R-f Grid Input Voltage, approx                          | 475  | 525   |             | Volts                    |
| Driving Power, approx                                        | 75   | 65    |             | Volts                    |
| Plate Power Output                                           | 900  | 1250  |             | Watts                    |



Average Grid-plate Characteristics for Transmitting Tube GL-851 2-10-41 K-6966441

Typical Operation Maximum

Ratings

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key down conditions per tube without modulation;

| D-c Plate Voltage                   | 1500 | 2000 | 2500 | 2500  | Volts  |
|-------------------------------------|------|------|------|-------|--------|
| D-c Grid Voltage                    | -150 | -200 | -250 | -500  | Volts  |
| D-c Plate Current                   | 0.9  | 0.9  | 0.9  | 1     | Ampere |
| D-c Grid Current, approx            | 0.15 | 0.12 | 0.1  | 0.200 | Ampere |
| Plate Input                         |      |      |      | 2500  | Watts  |
| Plate Dissipation                   |      |      |      | 750   | Watts  |
| Peak R-f Grid Input Voltage, approx | 375  | 425  | 450  |       | Volts  |
| Driving Power, approx               | 55   | 50   | 45   |       | Watts  |
| Plate Power Output                  | 900  | 1250 | 1700 |       | Watts  |
|                                     |      |      |      |       |        |

\* Averaged over any audio-frequency cycle.

+ At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.



Average Plate Characteristics for Transmitting Tube GL-851

2-10-41

Outline Transmitting Tube GL-851 K-2636625 3-27-34 GL-851 can be operated at maximum ratings in all classes of service at frequencies as high as 3 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL IN-FORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 15 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                              | 3   | 7  | 15 | Mc       |
|----------------------------------------------------------------------------------------|-----|----|----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: . |     |    |    |          |
| Class B Telephony<br>(Telephony, plate-modulated                                       | 100 | 88 | 76 | Per Cent |
| (Telegraphy                                                                            | 100 | 15 | 50 | Per Cent |

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

www.SteamPoweredRadio.Com

# GENERAL B ELECTRIC

### Transmitting Tube GL-858--Description and Rating

The GL-858 is a three-electrode, water-cooled high-vacuum electronic tube designed for use as a radio-frequency power amplifier, oscillator, or Class B modulator.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### Electrical

| Filament Voltage                           |                         |  | 22   | Volts      |
|--------------------------------------------|-------------------------|--|------|------------|
| Filament Current                           |                         |  | 52   | Amperes    |
| Amplification Factor Eb = 18 kv,           | $I_{b} = 75 \text{ ma}$ |  | 42   |            |
| Grid-plate Transconductance $E_c = -155$ , | $E_{f} = 22$            |  | 4800 | Micromhos  |
| Direct Interelectrode Capacitances:        |                         |  |      |            |
| Grid-plate                                 |                         |  | 18   | μµf        |
| Input                                      |                         |  | 16   | μµf        |
| Output                                     |                         |  | 2    | μµf        |
| Frequency for Maximum Ratings              |                         |  | 1.6  | Megacycles |
|                                            |                         |  |      |            |

#### Mechanical

| Gasket, Cat. No. 5182028P2     |          |        |
|--------------------------------|----------|--------|
| Type of Cooling                |          | Water  |
| Water Flow, gallons per minute | 8-15     |        |
| Net Weight, approx             | 8        | Pounds |
| Shipping Weight, approx        | 23       | Pounds |
| Installation and Operation     | GEH-1152 |        |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| CLASS B | A-F | POWER | AMPLIFIER | (TWO | TUBES |
|---------|-----|-------|-----------|------|-------|
|---------|-----|-------|-----------|------|-------|

| D-C Plate Voltage                     | 12000 | 20000 max | Volts     |
|---------------------------------------|-------|-----------|-----------|
| Max Signal Plate Current, per tube*   |       | 2.0 max   | Amperes   |
| D-C Max Signal Plate Input, per tube* |       | 40 max    | Watts     |
| Plate Dissipation, per tube*          |       | 20 max    | Kilowatts |
| D-C Grid Voltage                      | -140  |           | Volts     |
| Peak A-F Grid Input Voltage           | 2600  |           | Volts     |
| Zero Signal Plate Current             | 0.5   |           | Ampere    |
| Max Signal Plate Current              | 3.6   |           | Amperes   |
| Max Signal Plate Input*               | 43    |           | Watts     |
| Max Signal Driving Power, approx      | 115   |           | Watts     |
| Effective Load Resistance,            |       |           |           |
| plate-to-plate                        | 7200  |           | Ohms      |
| Max Signal Plate Power Output         | 26.5  |           | Kilowatts |

CLASS B R-F POWER AMPLIFIER

Carrier conditions per tube for use with a max modulation factor of 1.0

| 10000 | 14000                                    | 18000                                                                                                                                                 | 20000 max                                                                                                                                                                                                                       | Volts                                                                                                                              |
|-------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| -100  | -200                                     | -300                                                                                                                                                  |                                                                                                                                                                                                                                 | Volts                                                                                                                              |
| 0.5   | 0.7                                      | 0.9                                                                                                                                                   | 1.0 max                                                                                                                                                                                                                         | Ampere                                                                                                                             |
|       |                                          |                                                                                                                                                       | 20 max                                                                                                                                                                                                                          | Kilowatts                                                                                                                          |
|       |                                          |                                                                                                                                                       | 15 max                                                                                                                                                                                                                          | Kilowatts                                                                                                                          |
| 400   | 575                                      | 725                                                                                                                                                   |                                                                                                                                                                                                                                 | Volts                                                                                                                              |
| 25    | 70                                       | 85                                                                                                                                                    |                                                                                                                                                                                                                                 | Kilowatts                                                                                                                          |
| 1.5   | 3.3                                      | 5.6                                                                                                                                                   |                                                                                                                                                                                                                                 | Kilowatts                                                                                                                          |
|       | 10000<br>-100<br>0.5<br>400<br>25<br>1.5 | 10000         14000           -100         -200           0.5         0.7           400         575           25         70           1.5         3.3 | 10000         14000         18000           -100         -200         -300           0.5         0.7         0.9           400         575         725           25         70         85           1.5         3.3         5.6 | 10000 14000 18000 20000 max<br>-100 -200 -300<br>0.5 0.7 0.9 1.0 max<br>20 max<br>15 max<br>400 575 725<br>25 70 85<br>1.5 3.3 5.6 |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED Carrier Conditions per tube for use with a max modulation factor of 1.0

| D-C Plate Voltage                   |   | 8000 | 10000 | 12000 | 12000 max | Volts     |
|-------------------------------------|---|------|-------|-------|-----------|-----------|
| D-C Grid Voltage                    |   | -900 | -950  | -1000 | -3000 max | Volts     |
| D-C Plate Current                   |   | 0.9  | 0.9   | 0.95  | 1.0 max   | Ampere    |
| D-C Grid Current, approx            | ' | 0.10 | 0.09  | 0.08  | 0.25 max  | Ampere    |
| Plate Input                         |   |      |       |       | 12 max    | Kilowatts |
| Plate Dissipation                   |   |      |       |       | 10 max    | Kilowatts |
| Peak R-F Grid Input Voltage, approx |   | 1875 | 1950  | 1950  |           | Volts     |
| Driving Power, approx               |   | 180  | 200   | 150   |           | Watts     |
| Plate Power Output                  |   | 5    | 6     | 8     |           | Kilowatts |
|                                     |   |      |       |       |           |           |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation #

| D-C Plate Voltage                   | 10000 | 15000 | 18000 | 20000 max | Volts     |
|-------------------------------------|-------|-------|-------|-----------|-----------|
| D-C Grid Voltage                    | -1000 | -1100 | -1200 | -3000 max | Volts     |
| D-C Plate Current                   | 1.4   | 1.8   | 1.8   | 2.0 max   | Amperes   |
| D-C Grid Current, approx            | 0.13  | 0.1   | 0.1   | 0.25 max  | Ampere    |
| Plate Input                         |       |       |       | 40 max    | Kilowatts |
| Plate Dissipation                   |       |       |       | 20 max    | Kilowatts |
| Peak R-F Grid Input Voltage, approx | 2200  | 2500  | 2600  |           | Volts     |
| Driving Power, approx               | 275   | 250   | 250   |           | Watts     |
| Plate Power Output                  | 9     | 18    | 22.4  |           | Kilowatts |
|                                     |       |       |       |           |           |

\* Averaged over any audio-frequency cycle.

† At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

GL-858 can be operated at maximum ratings in all classes of service at frequencies as high as 1.5 megacycle. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under CHARACTERISTICS AND RATINGS). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 40 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                         | 1.5          | 20          | 40         | Mc         |
|---------------------------------------------------|--------------|-------------|------------|------------|
| Maximum Permissible Percentage of                 |              |             |            |            |
| Maximum rated Plate Voltage and                   |              |             |            |            |
| Plate Input:                                      |              |             |            |            |
| Class B Telephony                                 | 100          | 82          | 57         | Per Cent   |
| Class C(Telephony, plate-modulateo<br>(Telegraphy | 100          | 75          | 50         | Per Cent   |
| APPLICATION NOTES                                 |              |             |            |            |
| Plate Series Protective Resistors (see person     | anh describi | na nlate at | nouit unde | n Installa |

| Flace Series Protective Resistors | (see paragraph | describi | ng pla | te cir | cuit u | nder Ins | talla- |
|-----------------------------------|----------------|----------|--------|--------|--------|----------|--------|
| tion in the Instructions).        |                |          |        |        |        |          |        |
| Series Resistor, ohms             |                | 25       | 50     | 200    | 250    | 275      | 300    |
| Maximum Power Output of           |                |          |        |        |        |          |        |
| Rectifier, kilowatts              |                | 16       | 40     | 100    | 250    | 640      | 1600   |







21'11"

Outline Transmitting Tube GL-858 K-5182096 5-12-39

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

12-44 (7M) Filing No. 8850

#### www.SteamPoweredRadio.Com

## ELECTRONICS DEPARTMENT GENERAL B ELECTRIC

#### **Transmitting Tube GL-860 - - Description and Rating**

The 860 is a four-electrode screen-grid tube designed for use as a Class B and C amplifier in high-frequency circuits.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| Filament Voltage, volts                     | 10    |
|---------------------------------------------|-------|
| Filament Current, amperes                   | 3.25  |
| Amplification Factor, approx                | 200   |
| Grid-plate Transconductance, mmhos          |       |
| $I_{\rm b} = 50  \rm ma$                    | 1100  |
| Direct Interelectrode Capacitances, mu mu f |       |
| Grid-plate*                                 | 0.08  |
| Input                                       | 7.75  |
| Output                                      | 7.5   |
| Base or Terminal                            |       |
| Description Medium 4-pin Bay                | yonet |
| Net Weight, ounces approx                   | 8     |
| Shipping Weight, pounds approx              | 3     |

# MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B RADIO-FREQUENCY POWER AMPLIFIER (Carrier conditions per tube for use with a maximum modulation factor of 1.0)

|                     | Тур<br>Орел | oical<br>cation | Max<br>Rat-<br>ings |       |
|---------------------|-------------|-----------------|---------------------|-------|
| D-c Plate Voltage   | 2000        | 3000            | 3000                | volts |
| D-c Grid Voltage    | -50         | -50             |                     | volts |
| D-c Screen Voltaget | 300         | 300             | 500                 | volts |
| D-c Plate Current   | 0.060       | 0.043           | 0.085               | amp   |
| Plate Input         |             |                 | 150                 | watts |
| Screen Grid Input   |             |                 | 10                  | watts |
| Plate Dissipation   |             |                 | 100                 | watts |
| Plate Power Output  | 30          | 40              |                     | watts |
|                     |             |                 |                     |       |

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED

(Carrier conditions per tube for use with a maximum modulation factor of 1.0)

D-c Plate Voltage 1500 1800 2000 2000 volts D-c Grid Voltage -225 -800 volts -200 -225 D-c Screen Voltage 300 300 220 500 volts D-c Plate Current 0.070 0.067 0.085 0.085 amp D-c Grid Current, approx 0.030 0.030 0.038 0.040 amp Plate Input 170 watts 6.7 watts Screen Grid Input Plate Dissipation 67 watts Driving Power, 15 watts approx 15 17 Plate Power Output 45 60 105 watts

\* With external shielding

+ Use of series resistor not recommended







Outline Transmitting Tube GL-860K-53448724-5-44

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR

(Key-down conditions per tube without modulation) +

|       | Typi<br>Opera                                                 | Max<br>Rat-                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | ings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |
| 1500  | 2000                                                          | 2500                                                                                                                  | 3000                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | volts                                                                                                                                                                                                                                                                                                                                                                 |
| -150  | -150                                                          | -150                                                                                                                  | -150                                                                                                                                                                                                                                                                                                                                                                               | -800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | volts                                                                                                                                                                                                                                                                                                                                                                 |
| 300   | 300                                                           | 300                                                                                                                   | 300                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | volts                                                                                                                                                                                                                                                                                                                                                                 |
| 0.090 | 0.090                                                         | 0.090                                                                                                                 | 0.085                                                                                                                                                                                                                                                                                                                                                                              | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amp                                                                                                                                                                                                                                                                                                                                                                   |
| 0.015 | 0.015                                                         | 0.015                                                                                                                 | 0.015                                                                                                                                                                                                                                                                                                                                                                              | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amp                                                                                                                                                                                                                                                                                                                                                                   |
| 135   | 180                                                           | 225                                                                                                                   | 255                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | watts                                                                                                                                                                                                                                                                                                                                                                 |
| 75    | 80                                                            | 90                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | watts                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | watts                                                                                                                                                                                                                                                                                                                                                                 |
| 7     | 7                                                             | 7                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | watts                                                                                                                                                                                                                                                                                                                                                                 |
| 60    | 100                                                           | 135                                                                                                                   | 165                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | watts                                                                                                                                                                                                                                                                                                                                                                 |
|       | 1500<br>-150<br>300<br>0.090<br>0.015<br>135<br>75<br>75<br>7 | Typi<br>Opera<br>1500 2000<br>-150 -150<br>300 300<br>0.090 0.090<br>0.015 0.015<br>135 180<br>75 80<br>7 7<br>60 100 | Typical<br>Operation           1500         2000         2500           -150         -150         -150           300         300         300           0.090         0.090         0.090           0.015         0.015         0.015           135         180         225           75         80         90           7         7         7           60         100         135 | Typical<br>Operation           1500         2000         2500         3000           -150         -150         -150         300           300         300         300         300           0.090         0.090         0.090         0.085           0.015         0.015         0.015         0.015           135         180         225         255           75         80         90         90           7         7         7         7           60         100         135         165 | $\begin{array}{cccccc} Typical & Max\\ Operation & Rat-\\ings\\ 1500 & 2000 & 2500 & 3000 & 3000\\ -150 & -150 & -150 & -800\\ 300 & 300 & 300 & 300 & 500\\ 0.090 & 0.090 & 0.090 & 0.085 & 0.150\\ 0.015 & 0.015 & 0.015 & 0.015 & 0.040\\ 135 & 180 & 225 & 255 & 300\\ 75 & 80 & 90 & 90 & 100\\ & & & & & & \\ 7 & 7 & 7 & 7\\ 60 & 100 & 135 & 165 \end{array}$ |

The normal value of grid leak when the tube is used as an oscillator or r-f power amplifier (Class C) is in the neighborhood of 10,000 chms, although this may be replaced by a fixed bias. If self-bias is used the cathode resistor should be approximately 2000 ohms.

The maximum ratings apply only at frequencies below 30 megacycles. For operation at higher frequencies adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

| Frequency Megacycles                                            | 30  | 60 | 120 |
|-----------------------------------------------------------------|-----|----|-----|
| Percentage of Maximum<br>Rated Plate Voltage<br>and Plate Input |     |    |     |
| Class B                                                         | 100 | 85 | 70  |
| Class C                                                         | 100 | 75 | 50  |

The resonant frequency of the grid-plate circuit is approximately 195 mega-cycles.

tUse of series resistor not recommended

\*Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

#### GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (8M) Filing No. 8850

# ELECTRONICS DEPARTMENT GENERAL 🛞 ELECTRIC

## Transmitting Tube GL-861--Description and Rating

The 861 is a four-electrode screen-grid tube designed for use as a Class B and C amplifier in high-frequency circuits.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Number of Electrodes                                 | 4            |            |
|------------------------------------------------------|--------------|------------|
| Filament Voltage                                     | 11           | Volts      |
| Filament Current                                     | 10           | Amperes    |
| Amplification Factor                                 | 300          |            |
| Grid-plate Transconductance, I <sub>b</sub> = 130 ma | 2400         | Micromhos  |
| Grid-plate, with external shielding<br>Input         | 0.10<br>14.5 | uuf<br>uuf |
| Output                                               | 10.5         | uuf        |
|                                                      |              |            |

MECHANICAL

| Base                       | 3503, 3909   |
|----------------------------|--------------|
| Cap                        | 3910         |
| Net Weight, approx         | 2 1/2 Pounds |
| Shipping Weight. approx    | 9 Pounds     |
| Installation and Operation | GEH-980      |
|                            |              |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| T<br>Op   | ypical<br>eration                                               | Maximur<br>Ratings                                                                                                                                           | um<br>gs*                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| a maximun | n modulation                                                    | n factor of                                                                                                                                                  | 1.0)                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|           |                                                                 | 11                                                                                                                                                           | Volts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2500      | 3000 3500                                                       | 3500                                                                                                                                                         | Volts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| -60       | -60 -60                                                         | )                                                                                                                                                            | Volts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 500       | 500 500                                                         | 750                                                                                                                                                          | Volts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 190       | 175 150                                                         | 250                                                                                                                                                          | Milliamperes                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|           |                                                                 | 600                                                                                                                                                          | Watts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|           |                                                                 | 35                                                                                                                                                           | Watts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|           |                                                                 | 400                                                                                                                                                          | Watts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 250       | 245 21                                                          | 5                                                                                                                                                            | Volts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 20        | 15 1                                                            | 5                                                                                                                                                            | Watts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 140       | 160 17                                                          | 5                                                                                                                                                            | Watts                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2         | T<br><u>Op</u><br>2500<br>-60<br>500<br>190<br>250<br>20<br>140 | Typical<br><u>Operation</u><br>a maximum modulation<br>2500 3000 3500<br>-60 -60 -60<br>500 500 500<br>190 175 150<br>250 245 219<br>20 15 19<br>140 160 179 | Typical         Maximum           Operation         Ratings           a maximum modulation factor of         11           2500         3000         3500           -60         -60         -60           500         500         750           190         175         150         250           400         250         245         215           20         15         15           140         160         175 |  |

# Use of series resistor not recommended.

+ At crest of audio-frequency cycle.

|                                             |         | Typic<br>Operat | al<br>ion | Maximu<br>Rating | m<br>s*      |
|---------------------------------------------|---------|-----------------|-----------|------------------|--------------|
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR  | , PLATI | E-MODUL         | ATED      | 0                | 2.01         |
| (Carrier conditions per tube for use with a | maxim   | um moau         | lation    | Iactor of        | 1.0)         |
| Filament Voltage                            |         |                 |           | 11               | Volts        |
| D-c Plate Voltage                           | 2000    | 2500            | 3000      | 3000             | Volts        |
| D-c Grid Voltage                            | -250    | -225            | -200      | -800             | Volts        |
| D-c Screen Voltage                          | 400     | 400             | 375       | 750              | Volts        |
| D-c Plate Current                           | 250     | 220             | 200       | 300              | Milliamperes |
| D-c Grid Current, approx                    | 65      | 60              | 55        | 75               | Milliamperes |
| Plate Input                                 |         |                 |           | 650              | Watts        |
| Screen Grid Input                           |         |                 |           | 30               | Watts        |
| Plate Dissipation                           |         |                 |           | 270              | Watts        |
| Peak R-f Grid Input Voltage, approx         | 675     | 625             | 575       |                  | Volts        |
| Driving Power, approx                       | 0.045   | 0.040           | 0.035     |                  | Watts        |
| Plate Power Output                          | 285     | 340             | 400       |                  | Watts        |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR (Key down conditions per tube without modulation)  $\Delta$ 

| Filament Voltage                    |      |      | 1    | .1   | Volts        |
|-------------------------------------|------|------|------|------|--------------|
| D-c Plate Voltage                   | 2000 | 3000 | 3500 | 3500 | Volts        |
| D-c Grid Voltage                    | -250 | -250 | -250 | -800 | Volts        |
| D-c Screen Voltage                  | 500  | 500  | 500  | 750  | Volts        |
| D-c Plate Current                   | 300  | 300  | 300  | 350  | Milliamperes |
| D-c Grid Current                    | 40   | 40   | 40   | 75   | Milliamperes |
| Plate Input                         |      |      |      | 1200 | Watts        |
| Plate Dissipation                   |      |      |      | 400  | Watts        |
| Screen Grid Input                   |      |      |      | 35   | Watts        |
| Peak R-f Grid Input Voltage, approx | 725  | 725  | 725  |      | Volts        |
| Driving Power, approx               | 30   | 30   | 30   |      | Watts        |
| Plate Power Output                  | 400  | 600  | 700  |      | Watts        |

△ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

\*The GL-861 can be operated at frequencies as high as 20 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 60 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency                                                                | 20  | 30 | 60 | Megacycles |
|--------------------------------------------------------------------------|-----|----|----|------------|
| Max Permissible Percentage of Max<br>Rated Plate Voltage and Plate Input |     |    |    |            |
| Class B. R-f                                                             | 100 | 90 | 75 |            |
| Class C, Plate-modulated                                                 | 100 | 82 | 53 |            |
| Telegraphy                                                               | 100 | 82 | 53 |            |

The resonant frequency of the grid-plate circuit is approximately 100 megacycles.

The normal value of grid leak, when the tube is used as an oscillator or r-f power amplifier (Class C), is in the neighborhood of 5000 ohms, although this may be replaced by a suitable fixed bias. If self-bias is used the cathode resistor should be approximately 500 ohms.



Average Plate-Screen-Grid Transfer CharacteristicsK-6917429for Transmitting Tube GL-86110-2-39



AveragePlate-GridTransferCharacteristicsK-6917427forTransmittingTubeGL-86110-2-39







**K-4909033** 12-13-39

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-44 (14M) Filing No. 8850 Supersedes GET-506D

ET-T50

#### ELECTRONICS DEPARTMENT

# GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-862-A--Description and Rating

The 862-A is a three-electrode power tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. The plate is water-cooled and is capable of dissipating 50 to 100 kilowatts, depending upon the class of service in which the tube is used.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

ELECTRICAL

| Filament Voltage                            | 33 Volts        |
|---------------------------------------------|-----------------|
| Filament Current                            | 207 Amperes     |
| Amplification Factor                        | 45              |
| Grid-plate Transconductance                 | 17200 Micromhos |
| Direct Interelectrode Capacitances, mu mu f |                 |
| Grid-plate                                  | 69.5            |
| Input                                       | 53              |
| Output                                      | 4.5             |
| Frequency for Maximum Ratings               | 1.6 Megacycles  |

MECHANICAL

| Base                                    | 6628                 | 7.5         |
|-----------------------------------------|----------------------|-------------|
| Gasket                                  | Cat. No. 5182028P1   |             |
| Type of Cooling                         | Water and Forced Air |             |
| Water Flow, Max Outlet Temperature 70 C | 15-25                | Gallons/min |
| Air Flow, cubic feet per minute         |                      |             |
| To Bulb                                 | 15                   |             |
| To Stem                                 | 3                    |             |
| Net Weight, approx                      | 30                   | Pounds      |
| Shipping Weight, approx                 | 175                  | Pounds      |
| Installation and Operation Instructions | GEH-1152             |             |
|                                         |                      |             |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                           | Typical   | Maximum |           |
|-------------------------------------------|-----------|---------|-----------|
|                                           | Operation | Ratings |           |
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)   |           |         |           |
| D-c Plate Voltage                         | 12000     | 15000   | Volts     |
| Maximum Signal Plate Current, per tubet   |           | 7.5     | Amperes   |
| D-c Maximum Signal Plate Input, per tubet |           | 100     | Kilowatts |
| Plate Dissipationt, per tube              |           | 50      | Kilowatts |
| D-c Grid Voltage                          | 0         |         | Volts     |
| Peak A-f Grid Input Voltage               | 2000      |         | Volts     |
| Zero Signal Plate Current                 | 3         |         | Amperes   |
| Maximum Signal Plate Current              | 13        |         | Amperes   |
| Maximum Signal Plate Inputt               | 156       |         | Kilowatts |
| Maximum Signal Driving Power, approx      | 450       |         | Watts     |
| Effective Load, plate-to-plate            | 1800      |         | Ohms      |
| Maximum Signal Plate Power Output         | 90        |         | Kilowatts |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

|                                                                                                                                                                                                                  |                           | 01                                                | [ypica]<br>peratic                              | on .                                                | Maximum<br>Ratings                      |                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|
| CLASS B R-F POWER AMPLIFIER<br>(Carrier conditions per tube for use                                                                                                                                              | with a max                | modula                                            | tion fa                                         | actor                                               | of 1.0)                                 |                                                                                                  |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power‡, approx<br>Plate Power Output                |                           | 12000<br>-100<br>2.8<br>500<br>0.5<br>11          | 15000<br>-150<br>3.5<br>625<br>0.75<br>17.5     | 18000<br>-200<br>4.2<br>750<br>1.1<br>25            | 20000<br>5<br>100<br>75                 | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Kilowatts<br>Kilowatts           |
| CLASS C R-F POWER AMPLIFIER AND OSCI<br>(Carrier conditions per tube for use                                                                                                                                     | LLATOR - PL<br>with a max | ATE MODU<br>modula                                | JLATED<br>tion fa                               | actor                                               | of 1.0)                                 |                                                                                                  |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output |                           | 8000<br>-700<br>4<br>1<br>1700<br>1.7<br>24       | 10000<br>-750<br>4.5<br>1<br>1850<br>1.85<br>34 | 12000<br>-800<br>5<br>1<br>2000<br>2<br>45          | 12000<br>-3000<br>5<br>1.25<br>60<br>50 | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Kilowatts<br>Kilowatts           |
| CLASS C R-F POWER AMPLIFIER AND OSCI<br>Key-down conditions per tube without                                                                                                                                     | LLATOR<br>modulation      | S                                                 |                                                 |                                                     |                                         |                                                                                                  |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Flate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output |                           | 12000<br>-800<br>6.25<br>0.8<br>2050<br>1.6<br>50 | 15000<br>-900<br>7.5<br>0.85<br>2300<br>2<br>75 | 18000<br>-1000<br>8.33<br>0.9<br>2550<br>2.4<br>100 | 20000<br>-3000<br>10<br>1<br>200<br>100 | Volts<br>Volts<br>Amperes<br>Ampere<br>Kilowatts<br>Kilowatts<br>Volts<br>Kilowatts<br>Kilowatts |
| APPLICATION NOTES                                                                                                                                                                                                |                           |                                                   |                                                 |                                                     |                                         |                                                                                                  |
| Plate Series Protective Resistors<br>Installation in the Instructions                                                                                                                                            | (see paragr<br>)          | aph des                                           | cribing                                         | g plat                                              | e circuit                               | under                                                                                            |
| Series Resistor, ohms                                                                                                                                                                                            | 10                        | 20                                                | 40                                              |                                                     | 50                                      |                                                                                                  |
| Maximum Power Output of<br>Rectifier, kilowatts                                                                                                                                                                  | 100                       | 250                                               | 640                                             |                                                     | 1600                                    |                                                                                                  |
| <pre>+ Averaged over any audio-frequency<br/>+ At crest of audio-frequency cycle<br/>&amp; Modulation _ essentially negative.</pre>                                                                              | cycle                     | if the                                            | positi                                          | ve pe                                               | ak of the                               | audio-                                                                                           |

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.



www.SteamPoweredRadio.Com

Transmitting Tube GL-862-A K-6966424 4-5-44







Outline GL-862-A K-3846052 4-26-39

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. S44 (7M) Filing No. 8850

#### www.SteamPoweredRadio.Com

**ELECTRONICS DEPARTMENT** GENERAL 🛞 ELECTRIC

## Transmitting Tube GL-866-A/866--Description and Rating

GL-866-A/866 is a half-wave, mercury-vapor rectifier, designed to withstand high peak inverse voltages and to conduct at relatively low applied voltages. The construction minimizes the danger of bulb cracks caused by corona discharge. An edgewise-wound ribbon filament provides a large emission reserve and improved life.

Two 866-A/866's operating in a full-wave rectifier are capable of delivering to the input of a choke-input filter a rectified voltage of 3180 volts at 0.5 ampere with good regulation.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

Number of Electrodes

#### Electrical

Cathode - Filamentary

| Filament Voltage              | 2.5 | Volts   |
|-------------------------------|-----|---------|
| Filament Current, approximate | 5   | Amperes |
| Heating Time, typical         | 30  | Seconds |
| Peak Voltage Drop, typical    | 15  | Volts   |

#### Mechanical

| Type of Cooling - Convection          |   |        |
|---------------------------------------|---|--------|
| Net Weight, approximate               | 3 | Ounces |
| Shipping Weight, approximate          | 3 | Pounds |
| Installation and Operation - GEH-1196 |   |        |

#### MAXIMUM RATINGS

Maximum Peak Inverse Anode Voltage

| 150 Cycles per Second or Less<br>Condensed-Mercury Temperature<br>1000 Cycles per Second or Less<br>Condensed-Mercury Temperature | 2000<br>25 to 70 C | 10,000<br>25 to 60<br>5,000<br>25 to 70 | Volts<br>C<br>Volts<br>C |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|--------------------------|
| Maximum Anode Current                                                                                                             |                    |                                         |                          |
| Instantaneous<br>Average                                                                                                          | 2.0<br>0.5         | 1.0<br>0.25                             | Amperes<br>Amperes       |
| Recommended Temperature, Condensed-Mercury                                                                                        |                    | 40 + 5                                  | С                        |

2





GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

Supersedes GET-966

# GENERAL C ELECTRIC

### Transmitting Tube GL-869-B--Description and Rating

The GL-869-B is a half-wave, mercury-vapor rectifier tube for use in broadcast transmitters and other applications where high d-c voltages are required. Economy of operation and high over-all efficiency result from several unique design features incorporated in this tube. The design of cathode used allows the further advantage of operation with both in-phase and quadrature filament excitation. In quadrature operation the filament and anode voltages are approximately ninety degrees out of phase with each other. Such an arrangement, allowing uniform utilization of the cathode, results in greater uniformity of characteristic than is possible with other methods, and in long tube life.

#### **TECHNICAL INFORMATION**

These data are for reference use only. For design information see the specifications.

GENERAL DESIGN Number of Electrodes 2 Electrical Cathode - Filamentary Volts Voltage 5.0 Current, approx 18.0 Amperes 1 Minute Heating Time, typical 15 Volts Peak Voltage Drop, Typical Mechanical Type of Cooling - See Under Maximum Ratings Net Weight, approx 1 1/2 Pounds 6 Pounds Shipping Weight, approx Installation and Operation - GEH-977 MAXIMUM RATINGS Condensed Mercury Temperature C, Type of Cooling In-phase Filament Excitation Maximum Peak Inverse Anode +30 to +40 Forced Ventilation 20,000 Volts Voltage, 150 cycles or less +30 to +60 Natural Ventilation 10,000 Volts Maximum Anode Current Instantaneous, 25 to 150 cycles 10 Amperes 2.5 Amperes Average Quadrature Filament Excitation Maximum Peak Inverse Anode Forced Ventilation 15,000 Volts +30 to +40 Voltage, 150 cycles or less Maximum Anode Current Instantaneous, 25 to 150 cycles 15.0 Amperes 5.0 Amperes Average 100 Amperes Maximum Surge Anode Current for design only Duration of Surge Current 0.1 Seconds Maximum Time of Averaging Current 30 Seconds Recommended Tempeature, Condensed Mercury C · 35±5

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



<u>Tube Mounting Position</u> Vertical: Base down

Outline GL-869 B K-4909011 9-23-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 12-44 (8M) Filing No. 8850

#### www.SteamPoweredRadio.Com

PRINTED IN UNA

# ELECTRONICS DEPARTMENT

## Transmitting Tube GL-870-A--Description and Rating

The GL-870-A is a half-wave, mercury-vapor rectifier tube containing a heatercathode of the equipotential type. The cathode consists of a coated cylinder heated by means of an enclosed tungsten filament (heater). The cathode is connected to one side of the heater within the tube.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL DESIGN

| Number of Electrodes                                                                                                        | 2                           |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Cathode, Type                                                                                                               | Coated Unipotential Cathode |
| Voltage, volts                                                                                                              | 5.0                         |
| Current, amperes approx                                                                                                     | 65.0                        |
| Transformer Watts, for design purposes                                                                                      | 400                         |
| Heating Time, typical, min                                                                                                  | 30                          |
| Tube Voltage Drop, volts                                                                                                    |                             |
| Meximum                                                                                                                     | • 20                        |
| Minimum                                                                                                                     | 5                           |
| Net Weight, pounds approx                                                                                                   | 25                          |
| Shipping Weight, pounds approx                                                                                              | 40                          |
| Installation and Operation                                                                                                  | GEH-977                     |
| MAXIMUM RATINGS                                                                                                             |                             |
| Maximum Peak Inverse Anode Voltage, volts                                                                                   |                             |
| 150 cycles or less<br>Condensed-Mercury temperature 35 - 40 C<br>Condensed-Mercury temperature 35 - 50 C<br>Type of Cooling | 16000<br>7500<br>Forced Air |
| Maximum Anode Current, amperes                                                                                              |                             |
| Instantaneous, 25 cycles and above                                                                                          | 450                         |
| Average                                                                                                                     | 75                          |
| Surge, for design only                                                                                                      | 4500                        |
| Maximum Time of Averaging Current, seconds                                                                                  | 60                          |
| Maximum Time of Surge Anode Current, seconds                                                                                | 0.2                         |
| Recommended Temperature, Condensed Mercury, C                                                                               | 35 - 40                     |



GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (5M) Filing No. 8850

#### **ELECTRONICS DEPARTMENT**

# GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-872-A/872—Description and Rating

The 872-A/872 is a half-wave, mercury-vapor rectifier tube designed to withstand high peak inverse voltages, and to conduct at relatively low applied voltages.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifica-

GENERAL DESIGN

#### Electrical

| Number of Electrodes<br>Cathode Type                                                          |  | 2<br>F                 | ilamentary                  |
|-----------------------------------------------------------------------------------------------|--|------------------------|-----------------------------|
| Voltage<br>Current, approx<br>Transformer Watts, for design purposes<br>Heating Time, Typical |  | 5.0<br>7.5<br>50<br>30 | Volts<br>Amperes<br>Seconds |
| Approximate Tube Voltage Drop                                                                 |  | 10                     | Volts                       |

#### Mechanical

| Type of Cooling                            | Convection               |
|--------------------------------------------|--------------------------|
| Recommended Temperature, Condensed Mercury | 40 <u>+</u> 5 C          |
| Mounting Position                          | Vertical, Base Down      |
| Base                                       | Jumbo 4-pin, 1839        |
| Cap                                        | Medium Metal, RMA M8-126 |
| Net Weight, approx                         | 1/2 Pound                |
| Shipping Weight, approx                    | - 3 Pounds               |
| Installation and Operation                 | GEH-977                  |
|                                            |                          |

#### MAXIMUM RATINGS

Maximum Peak Inverse Anode Voltage

| 150 cycles or less                                                       | 5,000             | Volts      |
|--------------------------------------------------------------------------|-------------------|------------|
| Corresponding Condensed-Mercury Temperature Limits                       | 20 - 70           | C          |
| Maximum Peak Inverse Anode Voltage                                       |                   |            |
| 150 cycles or less<br>Corresponding Condensed-Mercury Temperature Limits | 10,000<br>20 - 60 | Volts<br>C |
| Maximum Anode Current                                                    |                   |            |

5.0

1.25

50

15

0.2

Amperes

Amperes

Amperes

Seconds

Second

Instantaneous 25 cycles and above Average Surge, for design only

Maximum Time of Averaging Current Maximum Time of Surge Anode Current

www.SteamPoweredRadio.Com



BOTTOM VIEW OF BASE

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (7M) Filing No. 8850

Supersedes GET-917A

7 Pounds

21 Pounds

# GENERAL DEPARTMENT

### Transmitting Tube GL-880--Description and Rating

#### TECHNICAL INFORMATION

The 880 is a three-electrode power tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. The plate is water-cooled and is capable of dissipating 12 to 20 kw, depending upon the class of service. The design of the terminal mount connections and the introverted anode minimize lead inductance and make the tube particularly suitable for high-frequency applications.

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS:

ELECTRICAL 12.6 Volts Filament Voltage 320 Amperes Filament Current 20 Amplification Factor Grid-plate Transconductance,  $I_b = 2.0$ 21000 Micromhos Direct Interelectrode Capacitances, mu mu f 24 Grid-plate 35 Grid-filament 2 Plate-filament MECHANICAL Gasket Cat. No. P5182028P1 Type of Cooling Water and Forced Air 12-20 Gallons per Water Flow minute Air Flow 20 Cubic feet To Bulb, from a 3-inch Diam Nozzle per minute

Net Weight Shipping Weight, approx Installation and Operation - ET-H1

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES):

| Tyr<br>Oper | ation                                                                       | Maximum*<br>Ratings                                                                                                                 |                                                                                                                                                                                    |  |
|-------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7500        | 10000                                                                       | 10500<br>5<br>40<br>15                                                                                                              | Volts<br>Amperes<br>Kilowatts<br>Kilowatts                                                                                                                                         |  |
| -300        | -430                                                                        |                                                                                                                                     | Volts                                                                                                                                                                              |  |
| 1450        | 1690                                                                        |                                                                                                                                     | Volts                                                                                                                                                                              |  |
| 1.0         | 1.0                                                                         |                                                                                                                                     | Amperes                                                                                                                                                                            |  |
| 7.0         | 7.0                                                                         |                                                                                                                                     | Amperes                                                                                                                                                                            |  |
| 52          | 70                                                                          |                                                                                                                                     | Kilowatts                                                                                                                                                                          |  |
| 250         | 225                                                                         |                                                                                                                                     | Watts                                                                                                                                                                              |  |
| 2200        | 3200                                                                        |                                                                                                                                     | Ohms                                                                                                                                                                               |  |
| 30          | 45                                                                          |                                                                                                                                     | Kilowatts                                                                                                                                                                          |  |
|             | Tyr<br><u>Oper</u><br>7500<br>1450<br>1.0<br>7.0<br>52<br>250<br>2200<br>30 | Typical<br><u>Operation</u><br>7500 10000<br>-300 -430<br>1450 1690<br>1.0 1.0<br>7.0 7.0<br>52 70<br>250 225<br>2200 3200<br>30 45 | Typical Maximum*<br><u>Operation</u> <u>Ratings</u><br>7500 10000 10500<br>5<br>40<br>15<br>-300 -430<br>1450 1690<br>1.0 1.0<br>7.0 7.0<br>52 70<br>250 225<br>2200 3200<br>30 45 |  |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

|                                                                                                                                                                                                                  | T<br>Op                                        | ypical<br>eration                                |                                                   | Maximum*<br>Ratings                      |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| CLASS B R-F POWER AMPLIFIER:<br>Carrier conditions per tube for use with a ma                                                                                                                                    | x mod                                          | ulation                                          | factor                                            | of 1.0                                   |                                                                                           |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power‡, approx<br>Plate Power Output                                    |                                                | 7500<br>-310<br>3.5<br>450<br>500<br>8           | 10000<br>-430<br>3<br>550<br>500<br>10            | 10500<br>4<br>32<br>20                   | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts        |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - Carrier conditions per tube for use with a ma                                                                                                                       | PLATE                                          | -MODULA                                          | TED:<br>factor                                    | of 1.0                                   |                                                                                           |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output |                                                | 7500<br>-1000<br>3.0<br>0.3<br>1550<br>460<br>16 | 10000<br>-1200<br>3.6<br>0.5<br>1770<br>880<br>28 | 10500<br>-1200<br>3.6<br>0.8<br>36<br>12 | Volts<br>Volts<br>Amperes<br>Amperes<br>Watts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR:<br>Key-down conditions per tube without modulati                                                                                                                     | lon§                                           |                                                  |                                                   |                                          |                                                                                           |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output | 7500<br>-600<br>5<br>0.45<br>1250<br>560<br>27 | 10000<br>-800<br>4.5<br>0.4<br>1400<br>550<br>34 | 10000<br>-800<br>6<br>0.5<br>1500<br>750<br>45    | 10500<br>-1200<br>6<br>0.8<br>60<br>20   | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts        |

+ Averaged over any audio-frequency cycle.

# At crest of audio-frequency cycle.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

APPLICATION NOTES

\* The GL-880 can be operated at maximum ratings in all classes of service at frequencies as high as 25 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency - M | Ic        |         | 25  | 50 | 75 | 100 |
|---------------|-----------|---------|-----|----|----|-----|
| Class B R-f   |           |         |     |    |    |     |
| Per Cent M    | lax Plate | Voltage | 100 | 80 | 68 | 60  |
| Per Cent M    | lax Plate | Input   | 100 | 94 | 85 | 75  |

Class C Plate-modulated

Per Cent Max Plate Voltage and Plate Input 100 72 56 45 Class C

Per Cent Max Plate Voltage and Plate Input 100 75 62 50

Plate Series Protective Resistors (See paragraph describing plate circuit under Installation in the Instructions)

| Series  | Resisto | or, ohm: | 3  |            |           | 10 | 15  | 20  | 30  |
|---------|---------|----------|----|------------|-----------|----|-----|-----|-----|
| Maximum | Power   | Output   | of | Rectifier, | kilowatts | 40 | 100 | 250 | 640 |



Outline Transmitting Tube GL-880 K-5965320 9-23-44



Characteristic Curve K-8074621 9-26-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

Supersedes GET-918B

#### www.SteamPoweredRadio.Com

**ELECTRONICS DEPARTMENT** 

# GENERAL 🍘 ELECTRIC

### Transmitting Tube GL-889--Description and Rating

The GL-889 is a power tube designed for use as a radio-frequency, amplifier, oscillator, or Class B modulator. The plate is water-cooled and is capable of dissipating 3 to 5 kilowatts, depending upon the class of service. The design of the mount and terminal connections minimizes lead inductance and makes the tube particularly suitable for high-frequency radio broadcast and industrial heating applications.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

| Number of Electrodes                                                    |         | 3                   |                          |
|-------------------------------------------------------------------------|---------|---------------------|--------------------------|
| ELECTRICAL                                                              |         |                     |                          |
| Cathode-Filamentary<br>Filament Voltage                                 |         | 11                  | Volts                    |
| Filament Current                                                        |         | 125                 | Amperes                  |
| Amplification Factor, $E_{b} = 5 \text{ kv}$ , $I_{b} = 1.0 \text{ am}$ | p       |                     |                          |
| $E_{c} = 75 v, E_{f} = 11 v a$                                          | -c      | 21                  |                          |
| Grid-plate Transconductance                                             |         | 9000                | Micromhos                |
| Direct Interelectrode Capacitances,                                     |         |                     |                          |
| Grid-plate                                                              |         | 17.5                |                          |
| Grid-filament                                                           |         | 23.3                |                          |
| Plate-filament                                                          |         | 2.7                 |                          |
| Frequency for Maximum Ratings                                           |         | 50                  | Megacycles               |
| MECHANICAL                                                              |         |                     |                          |
| Type of Cooling - Water and Forced Air                                  |         |                     |                          |
| Water Flow                                                              |         | 3 - 6               | Gallons per              |
|                                                                         |         | -                   | Minute                   |
| Air Flow                                                                |         |                     |                          |
| To Bulb, from a 3-inch diam nozzle                                      |         | 15                  | Cubic Feet<br>per Minute |
| Gasket                                                                  |         | Cat. No             | . 5182028P8              |
| Net Weight, approx                                                      |         | 2                   | Pounds                   |
| Shipping Weight, approx                                                 |         | 9                   | Pounds                   |
| Instructions                                                            |         | ET-H1               |                          |
| MAXIMUM RATINGS AND TYPICAL OPERATING CONDITION                         | IS      |                     |                          |
| CLASS B AUDIO-FREQUENCY POWER AMPLIFIER (TWO T                          | JBES):  |                     |                          |
|                                                                         | Typical | Maximum*<br>Ratings |                          |

OperationRatingsD-c Plate Voltage5000 6000 75008500 VoltsMaximum Signal Plate Current, per tubet2.0 AmperesD-c Maximum Signal Plate Input, per tubet12 KilowattsPlate Dissipation, per tubet5.0 KilowattsD-c Grid Voltage-180 -230 -300Volts

CLASS B AUDIO-FREQUENCY POWER AMPLIFIER (TWO TUBES): (CONT'D)

|                                                                                                                                                                                                                                                    | Т<br><u>Ор</u>                                  | ypical<br>eratio                                   | n                                                | Maximum*<br><u>Ratings</u>                 |                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|
| Peak A-f Grid Input Voltage<br>Zero Signal Plate Current<br>Maximum Signal Plate Current<br>Maximum Signal Plate Input <sup>†</sup><br>Maximum Signal Driving Power, approx<br>Effective Load, plate-to-plate<br>Maximum Signal Plate Power Output | 1460<br>0.4<br>3.2<br>16<br>170<br>2520<br>8.8  | 1680<br>0.4<br>3.6<br>21.6<br>180<br>3680<br>12    | 1700<br>0.4<br>3.2<br>24<br>150<br>5000<br>15    |                                            | Volts<br>Amperes<br>Amperes<br>Kilowatts<br>Watts<br>Ohms<br>Kilowatts                        |
| CLASS B RADIO-FREQUENCY POWER AMPLIFIER<br>Carrier conditions per tube for use with a ma                                                                                                                                                           | ax modu                                         | lation                                             | factor                                           | r of 1.0.                                  |                                                                                               |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power, approx‡<br>Plate Power Output                                                                      |                                                 | 6000<br>-250<br>0.9<br>920<br>95<br>1.5            | 7500<br>-300<br>0.9<br>1000<br>80<br>2           | 8500<br>1.0<br>7.5<br>5.0                  | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts            |
| CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND (<br>Carrier conditions per tube for use with a ma                                                                                                                                                     | OSCILLA<br>ax modu                              | TOR -                                              | PLATE-N<br>factor                                | MODULATED<br>r of 1.0.                     |                                                                                               |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output                                   |                                                 | 5000<br>-800<br>0.9<br>0.12<br>1300<br>155<br>2.75 | 6000<br>-900<br>1.0<br>0.1<br>1420<br>140<br>4.0 | 6000<br>-1000<br>1.0<br>0.25<br>6.0<br>3.0 | Volts<br>Volts<br>Amperes<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts |
| CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND (Key-down conditions per tube without modulations)                                                                                                                                                     | SCILLA Lon $\pi$ .                              | TOR                                                |                                                  |                                            |                                                                                               |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power, approx<br>Plate Power Output                                   | 5000<br>-500<br>1.5<br>0.19<br>1200<br>220<br>5 | 6000<br>-600<br>1.8<br>0.21<br>1460<br>290<br>7    | 7500<br>-800<br>2.0<br>0.24<br>1830<br>400<br>10 | 8500<br>-1000<br>2.0<br>0.25<br>16<br>5    | Volts<br>Volts<br>Amperes<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Watts<br>Kilowatts |
| <ul> <li>Averaged over any audio-frequency cycle.</li> <li>At crest of audio-frequency cycle.</li> <li>π Modulation, essentially negative, may be frequency envelope does not exceed 115 per</li> </ul>                                            | used i<br>cent o                                | f the<br>f the                                     | positi<br>carries                                | ve peak o<br>r conditio                    | f the audio-<br>ns.                                                                           |

APPLICATION NOTES

\* GL-889 can be operated at maximum ratings in all classes of service at frequencies as high as 50 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 150 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency - Mc                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                       | 50            | 75                                                                                   | 100      | 150    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|----------|--------|
| Class B R-f                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                       |               |                                                                                      |          |        |
| Per Cent Max Plate Voltage and Plate Input                                                                                                                                                                                                                                                               |                                                                    |                                                                                       | 100           | 90                                                                                   | 83       | 72     |
| Class C Plate-modulated                                                                                                                                                                                                                                                                                  |                                                                    |                                                                                       |               |                                                                                      |          |        |
| Per Cent Max Plate Voltage and Plate Input                                                                                                                                                                                                                                                               |                                                                    |                                                                                       | 100           | 85                                                                                   | 75       | 60     |
| Class C                                                                                                                                                                                                                                                                                                  |                                                                    |                                                                                       |               |                                                                                      |          |        |
| Per Cent Max Plate Voltage                                                                                                                                                                                                                                                                               |                                                                    |                                                                                       | 100           | 87                                                                                   | 78       | 65     |
| Per Cent Max Plate Input                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                       | 100           | 85                                                                                   | 70       | 50     |
| Plate Series Protective Resistors (See para<br>stallat:                                                                                                                                                                                                                                                  | agra<br>ion :                                                      | ph descri<br>in the In                                                                | bing<br>struc | plate cir<br>tions)                                                                  | cuit und | er In- |
| Series Resistor, ohms                                                                                                                                                                                                                                                                                    |                                                                    | 25                                                                                    | 50            | 100                                                                                  | 150      |        |
| Maximum Power Output of Rectifier, kilowatts                                                                                                                                                                                                                                                             |                                                                    | 16                                                                                    | 40            | 100                                                                                  | 250      |        |
| Grid terminal Base No<br>Grid terminal Base No | Dist)                                                              | mensions<br>max                                                                       | s in          | Inches                                                                               |          |        |
| E diam<br>C diam<br>B diam<br>M<br>K diam<br>L diam                                                                                                                                                                                                                                                      | A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>P | 6 3/16<br>3 1/4<br>2 7/8<br>4.44<br>3 5/8<br>.442<br>2.702<br>2.052<br>.322<br>2 5/32 | 2             | 5 13/16<br>.31<br>3/4<br>.650<br>.465<br>.432<br>.672<br>.992<br>5/8<br>.302<br>3/32 |          |        |

٩

Outline Transmitting Tube GL-889 K-5344713 5-15-39

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com





K-8074636





Characteristics for Transmitting Tube GL-889 K-8074637 6-25-43



Average Plate Characteristicsfor Transmitting Tube GL-889K-80746356-23-43

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 9-20-44 (7M) Filing No. 8850

www.SteamPoweredRadio.Com

U.S.A

ELECTRONICS DEPARTMENT

# GENERAL 🌮 ELECTRIC

### Transmitting Tube GL-889-R--Description and Rating

The 889-R is a three-electrode power tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. The plate is fitted with a special radiator and cooling is obtained by forced air. The design of the mount and terminal connections minimizes lead inductance and makes the tube particularly suitable for high-frequency applications.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

 $E_{f} = 11$  volts a-c

GENERAL CHARACTERISTICS

Number of Electrodes

Electrical

Cathode - filamentary Filament Voltage Filament Current

Average Characteristics, Eb = 5 kvIb = 1.0 amp

Grid Voltage Amplification Factor Grid-plate Transconductance,  $I_b = 1.0$  amp

Direct Interelectrode Capacitances Grid-plate Grid-filament Plate-filament

Frequency for Maximum Ratings

Mechanical

Type of Cooling - Forced-air Maximum Incoming Air Temperature 50 C Flow To Radiator To Bulb, from a 3-inch diameter nozzle Net Weight, approximate 35 Pounds Shipping Weight, approximate 52 Pounds Installation and Operation - ET-H13

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES):

|                                                                                                                                           | T<br>Op | ypical<br>eratio | <u>n</u> | Maximum*<br>Ratings      |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|----------|--------------------------|--------------------------------------------|
| D-c Plate Voltage<br>Maximum Signal Plate Current, per tube†<br>D-c Maximum Signal Plate Input, per tube†<br>Plate Dissipation, per tube† | 5000    | 6000             | 7500     | 8500<br>2.0<br>12<br>5.0 | Volts<br>Amperes<br>Kilowatts<br>Kilowatts |

3

11 Volts 125 Amperes

75 Volts 21 9000 Micromhos

18.5µuf 23.3µuf 3.0.NUT

25 Megacycles

500 Cubic feet per minute 15 Cubic feet per minute CLASS B A-F POWER AMPLIFIER (TWO TUBES): (Cont'd)

|                                                        | T.       | ypical |        | Maximum* |           |
|--------------------------------------------------------|----------|--------|--------|----------|-----------|
|                                                        | Op       | erátio | n      | Ratings  |           |
| Redistor Membersturet                                  |          |        |        | 180      | C         |
| D-c Grid Voltage                                       | -180     | -230   | -300   |          | Volts     |
| Peek A-f Grid Input Voltage                            | 1460     | 1680   | 1700   |          | Volts     |
| Zono Signal Plate Current                              | 0.4      | 0.4    | 0.4    |          | Amperes   |
| Meximum Signal Plate Current                           | 3.2      | 3.6    | 3.2    |          | Amperes   |
| Maximum Signal Plate Innutt                            | 16       | 21.6   | 24     |          | Kilowatts |
| Maximum Signal Driving Power, approx                   | 170      | 180    | 150    |          | Watts     |
| Effective Load, plate-to-plate                         | 2520     | 3680   | 5000   |          | Ohms      |
| Maximum Signal Plate Power Output                      | 8.8      | 12     | 15     |          | Kilowatts |
|                                                        |          |        |        |          |           |
| CLASS B R-F POWER AMPLIFIER                            |          | dan fa |        | £ ] 0    |           |
| Carrier conditions per tube for use with a max         | modulat  | ION IA | CLOP 0 | 1 1.0    |           |
| D-c Plate Voltage                                      |          | 6000   | 7500   | 8500     | Volts     |
| D-c Grid Voltage                                       |          | -250   | -300   |          | Volts     |
| D-c Plate Current                                      |          | 0.9    | 0.9    | 1.0      | Amperes   |
| Plate Input                                            |          |        |        | 7.5      | Kilowatts |
| Plate Dissipation                                      |          |        |        | 5.0      | Kilowatts |
| Radiator Temperature‡                                  |          |        |        | 180      | С         |
| Peak R-f Grid Input Voltage                            |          | 920    | 1000   |          | Volts     |
| D-c Grid Current                                       |          | _      | 0 -    |          |           |
| Driving Power, approx§                                 |          | 95     | 80     |          | Watts     |
| Plate Power Output, approximate                        |          | 1.5    | 2      |          | Kilowatts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - P         | LATE-MOD | ULATED |        |          |           |
| Carrier conditions per tube for use with a max         | modulat  | ion fa | ctor o | f 1.0    |           |
|                                                        |          | 5000   | 6000   | 6000     | Volts     |
| D-c Plate Voltage                                      |          | -800   | -0000  | -1000    | Volts     |
| D-c Grid Voltage                                       |          | 0.0    | -900   | 1 0      | Amperes   |
| D-c Plate Current                                      |          | 0.12   | 0.1    | 0.25     | Amperes   |
| Det Input                                              |          | 0.10   | 0.1    | 6.0      | Kilowatts |
| Plate Dissipation                                      |          |        |        | 3.0      | Kilowatts |
| Productor Temperature $\pm$ (modulation factor $m = 1$ | .0)      |        |        | 180      | С         |
| Reak R-f Grid Input Voltage, approx                    | ,        | 1300   | 1420   |          | Volts     |
| Driving Power, approx                                  |          | 155    | 140    |          | Watts     |
| Plate Power Output                                     |          | 2.75   | 4.0    |          | Kilowatts |
|                                                        |          |        |        |          |           |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR             | 2017     |        |        |          |           |
| Key-down conditions per tube without modulatio         | 1111     |        |        |          |           |
| D-c Plate Voltage                                      | 5000     | 6000   | 7500   | 8500     | Volts     |
| D-c Grid Voltage                                       | -500     | -600   | -800   | -1000    | Volts     |
| D-c Plate Current                                      | 1.5      | 1.8    | 2.0    | 2.0      | Amperes   |
| D-c Grid Current, approx                               | 0.19     | 0.21   | 0.24   | 0.25     | Amperes   |
| Plate Input                                            | -        |        |        | 16       | Kilowatts |
| Plate Dissipation                                      |          |        |        | 5        | Kilowatts |
| Radiator Temperature‡                                  |          | 245-   | - 0    | 180      | U         |
| Peak R-f Grid Input Voltage, approx                    | 1200     | 1460   | 1030   |          | VOLTS     |
| Driving Power, approx                                  | 220      | 290    | 400    |          | Watts     |
| Plate Power Output, approximate                        | 5        | (      | 10     |          | VIIOMALLS |
|                                                        |          |        |        |          |           |

+ Averaged over any audio-frequency cycle.

+ This temperature corresponds to the maximum ratings when the air flow is 500 cubic feet per minute and the temperature of the incoming air does not exceed 45 C. The glass temperature must not be allowed to exceed 150 C.

§ At crest of audio-frequency cycle.

 $\pi$  Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

APPLICATION NOTES

\* GL-889-R can be operated at maximum ratings in all classes of service at frequencies as high as 25 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency - Mc                                                        | 25         | 50       | 75       | 100      |
|-----------------------------------------------------------------------|------------|----------|----------|----------|
| Class B R-f<br>Per Cent Max Plate Voltage and Plate Input             | 100        | 87       | 80       | 74       |
| Class C Plate-modulated<br>Per Cent Max Plate Voltage and Plate Input | 100        | 80       | 68       | 60       |
| Class C<br>Per Cent Max Plate Voltage<br>Per Cent Max Plate Input     | 100<br>100 | 85<br>75 | 76<br>60 | 70<br>50 |

Plate Series Protective Resistors (See paragraph describing plate circuit under Installation in the Instructions)

| Series Resistor, ohms                    | 25      | 50 | 100 | 150 |
|------------------------------------------|---------|----|-----|-----|
| Maximum Power Output of Rectifier, kilow | atts 16 | 40 | 100 | 250 |



Outline Transmitting Tube GL-889-R K-6966908 11-25-43






Average Plate Characteristics for Transmitting Tube GL-889-R K-8074635 6-25-43

GL-889 TYPICAL GRID-PLATE TRANSFER CHARACTERISTIC Ef = II VOLTS A-C



Typical Grid Plate Transfer Characteristics for Transmitting Tube GL-839-R K-8074636 9-26-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 10-44 (9M) Filing No. 8850

PRINTEC IN USA

# GENERAL C ELECTRIC

## Transmitting Tube GL-891--Description and Rating

The 891 is a three-electrode transmitting tube of the double-filament type for use as a radio-frequency power amplifier, oscillator, Class A modulator and Class B modulator. The construction of the filament permits operation from two-phase orsingle-phase alternating current as well as from direct current, for all classes of service. The plate is water-cooled and is capable of dissipating 4 to 7.5 kilowatts, depending on the service in which the tube is used.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

#### Electrical

| Filament                                    | Tungsten,  | Two-unit Type |
|---------------------------------------------|------------|---------------|
| Excitation                                  | lø a-c, 2ø | a-c, or d-c   |
| Voltage per Unit                            | 11         | Volts         |
| Current per Unit                            | 60         | Amperes       |
| Amplification Factor                        | 8          | -             |
| Direct Interelectrode Capacitances, approx: |            |               |
| Grid-plate                                  | 27         | μμſ           |
| Grid-filament                               | 18         | μµf           |
| Plate-filament                              | 2          | $\mu\mu f$    |
|                                             |            |               |

#### Mechanical

Cooling: Water flow of 3 to 8 gallons per minute must start before application of any voltages and continue for at least 5 minutes after removal of voltages. Water temperature must not exceed 70 C under any conditions of operation.

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

#### CLASS A A-F POWER AMPLIFIER AND MODULATOR

|                                                                                                                                                                                           | Typical<br>Operation                                 | Maximum<br>Batings                                               |                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| D-c Plate Voltage<br>Plate Input<br>Plate Dissipation<br>D-c Voltage<br>D-c Grid Voltage*<br>Peak A-f Grid Voltage<br>D-c Plate Current<br>Load Resistance<br>U.P.O. (5% second harmonic) | 8000<br>-630<br>700<br>0.9<br>5200<br>2              | 12000 Vo:<br>7.5 K1<br>7.5 K1<br>Vo:<br>Vo:<br>Vo:<br>Amp<br>Ohm | lts<br>lowatts<br>lowatts<br>lts<br>lts<br>lts<br>oere<br>ns<br>lowatts |
| CLASS B A-F POWER AMPLIFIER AND MODULATOR                                                                                                                                                 |                                                      |                                                                  |                                                                         |
| D-c Plate Voltage<br>Max Signal D-c Plate Currentt<br>Max Signal Plate Inputt<br>Plate Dissipationt<br>D-c Plate Voltage                                                                  | 200 10000 1250                                       | 15000 Vol<br>2.0 Amy<br>20 Kil<br>5 Kil                          | lts<br>beres<br>lowatts<br>lowatts                                      |
| D-c Grid Voltage60D-c Grid Voltage*-6Peak A-f Grid-to-grid Voltage22Zero Signal D-c Plate Current00Max Signal D-c Plate Current22Load Resistance (per tube)12                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 Vol<br>0 Vol<br>0 Vol<br>4 Amr<br>3 Amr<br>0 Ohm               | ts<br>ts<br>beres<br>beres<br>s                                         |

| CLASS B A-F POWER | AMPLIFIER | AND | MODULATOR | (CONT'D) | 1 |
|-------------------|-----------|-----|-----------|----------|---|
|-------------------|-----------|-----|-----------|----------|---|

| CHACE D' A F ICHER AM DIFIER AND MODOLATO. |         | ,         |          |              |              |   |
|--------------------------------------------|---------|-----------|----------|--------------|--------------|---|
|                                            |         | Typical   |          | Maximum      |              |   |
|                                            | (       | peration  |          | Ratings      |              |   |
| Effective Load Resistance(plate-to-plate)  | 5000    | 6400      | 10000    |              | Ohms         |   |
| Max Signal Driving Power, approx           | 260     | 324       | 350      |              | Watts        |   |
| Max Signal Power Output, approx            | 8       | 20        | 22       |              | Kilowatts    |   |
|                                            | Ŭ       | -0        |          |              | nilio da obo |   |
| Unless otherwise specified, values are     | for tw  | tubes.    |          |              |              |   |
| עוואסק ב ב באודה אות השערה ב ב באודה       |         |           |          |              |              |   |
| Cannien conditions per tube for use with   | e mevin | lum modul | ation fo | acton of 1   | n            |   |
| Carrier condicions per cube for use with a | a maxin | ium modul | acton 18 | actor of 1.0 | 0            |   |
| D-c Plate Voltage                          |         |           |          | 15000        | Volts        |   |
| D-c Plate Current                          |         |           |          | 1.0          | Amperes      |   |
| Plate Input                                |         |           |          | 10           | Kilowatts    |   |
| Plate Dissipation                          |         |           |          | 6            | Kilowatts    |   |
| D-c Plate Voltage                          | 6000    | 10000     | 14000    |              | Volts        |   |
| D-c Grid Voltage **                        | -600    | -1130     | -1600    |              | Volts        |   |
| Peak R-f Grid Voltage                      | 600     | 830       | 1000     |              | Volts        |   |
| D-c Plate Current                          | 0.7     | 0.8       | 0.56     |              | Ampere       |   |
| Driving Power, approx#                     | 82      | 0         | 0        |              | Watts        |   |
| Power Output, approx                       | l       | 2         | 2.275    |              | Kilowatts    |   |
|                                            |         |           |          |              |              |   |
| CLASS C PLATE-MODULATED R-F POWER AMPLIF   | IER - I | ELEPHONY  |          |              |              |   |
| Carrier conditions per tube for use with a | a max m | odulatio  | n factor | c of 1.0     |              |   |
| -                                          |         |           |          | 0            |              |   |
| D-c Plate Voltage                          |         |           |          | 8000         | Volts        |   |
| D-c Grid Voltage                           |         |           |          | -3000        | Volts        |   |
| D-c Plate Current                          |         |           |          | 1.0          | Ampere       |   |
| D-c Grid Current                           |         |           |          | 0.15         | Ampere       |   |
| Plate Input                                |         |           |          | 8            | Kilowatts    |   |
| Plate Dissipation                          |         |           |          | 4            | Kilowatts    |   |
| D-c Plate Voltage                          | 600     | 0 800     | 0        |              | Volts        |   |
| D-c Grid Voltage                           | -200    | -2400     | 0        |              | Volts        |   |
| Peak R-f Grid Voltage                      | 265     | 0 3100    | 0        |              | Volts        |   |
| D-c Plate Current                          | 0.7     | 5 0.78    | 8        |              | Ampere       |   |
| D-c Grid Current, approx                   | 0.      | 1 0.08    | 8        |              | Ampere       |   |
| Driving Power, approx                      | 26      | 0 260     | 0        |              | Watts        |   |
| Power Output, approx                       | 3.      | 5         | 5        |              | Kilowatts    |   |
|                                            |         |           |          |              |              |   |
| CLASS C R-F POWER AMPLIFIER - TELEGRAPHY   |         |           |          |              |              |   |
| Key-down conditions per tube without modul | lation# | #         |          |              |              |   |
| D-c Plate Voltage                          |         |           |          | 12000        | Volts        |   |
| D-c Grid Voltage                           |         |           |          | -3000        | Volta        |   |
| D-c Plate Current                          |         |           |          | - 2 0        | Ampener      |   |
| D-c Grid Current                           |         |           |          | 0.15         | Amperes      |   |
| Plate Input                                |         |           |          | 18           | Kileretta    |   |
| Plate Diggination                          |         |           |          | 10           | KILOWALUS    |   |
| Pa Plata Valtaga                           | 000     | 0 10000   | 0        | 0            | VITOMATCS    |   |
| D-c riate voltage                          | 800     | 0 10000   | 0        |              | Volts        |   |
| D-C Grid Voltage                           | -180    | 0 -2000   | 0        |              | Volts        |   |
| Peak R-I Grid Voltage                      | 250     | 0 2900    | 5        |              | Volts        | ~ |
| D-c Plate Current                          | 1.      | 1 1.45    | 2        |              | Amperes -    |   |
| D-c Grid Current, approx                   | 0.0     | 0.105     | 2        |              | Ampere       |   |
| Driving Power, approx                      | 15      | 0 310     | C        |              | Watts        |   |
| Power Output, approx                       | 6.      | 5 10      | C        |              | Kilowatts    |   |
|                                            |         |           |          |              |              |   |

† Averaged over any audio-frequency cycle.

\* With a-c filament supply.

\*\* With d-c filament supply.

# At crest of a-f cycle with modulation factor of 1.0

## Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-891 can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS.) The tabulation shows the highest percentage of maximum plate voltage and power input that can be used up to 20 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                            | 1.6 | 7.5 | 20 | Mc       |
|----------------------------------------------------------------------|-----|-----|----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND |     |     |    |          |
| PLATE INPUT:                                                         |     |     |    |          |
| Class B telephony                                                    | 100 | 82  | 72 | Per cent |
| Class C (telephony, plate modulated                                  | 100 | 75  | 65 | Per cent |
| (telegraphy                                                          | 100 | 75  | 50 | Per cent |



Grid-current Characteristics for Transmitting Tube GL-891 K-8639621 3-15-44



Constant Current Plate and Grid Characteristics K-8639622 3-15-44



Average Plate Characteristics K-8639620 3-15-44



Outline Transmitting Tube GL-891 K-6966979 12-10-40

### FILAMENT CONNECTIONS

WITH D-C EXCITATION



V = 22 VOLTS A = 60 AMPERES

WITH SINGLE-PHASE A-C EXCITATION



V=22 VOLTS A = 60 AMPERES



A = 60 AMPERES

# ELECTRONICS DEPARTMENT

## Transmitting Tube GL-891-R--Description and Rating

The 891-R is a three-electrode transmitting tube for use as a radio-frequency power amplifier, oscillator, Class A modulator and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating current, as well as from direct current, for all classes of service. The plate of the 891-R is air-cooled by means of a special radiator which is fitted to the tube by the manufacturer. The plate is capable of dissipating 2 to 5 kilowatts of power, depending on the service in which the tube is used.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

Electrical

|                       |                      |          | <b>m</b>   |
|-----------------------|----------------------|----------|------------|
| Filament              |                      | Two-unit | Type       |
| Voltage per unit      |                      | 11       | Volts      |
| Current per unit      |                      | 60       | Amperes    |
| Amplification Factor  |                      | 8        |            |
| Direct Interelectrode | Capacitances, approx |          |            |
| Grid-Plate            |                      | 30       | uuf        |
| Grid-Filament         |                      | 18       | uuf        |
| Plate-Filament        |                      | 2        | uuf        |
| Frequency for Maximum | Ratings              | 1.6      | Megacycles |
|                       |                      |          |            |

Mechanical

Cooling - Air flow of 450 cfm normal must be started before application of any voltages and continue for at least 10 minutes after removal of voltages. See table on Page 3. Base Description - See Outline Mounting Position - Vertical Maximum Over-all Dimensions - See Outline

Length Diameter Net Weight, approx Shipping Weight Installation and Operation

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS A A-F POWER AMPLIFIER AND MODULATOR

|                          | Typical<br>Operation | Maximum<br>Ratings |
|--------------------------|----------------------|--------------------|
| D-c Plate Voltage        | 6000                 | 10000 Volts        |
| Plate Dissipation        |                      | 3.5 Kilowatts      |
| Radiator Temperature +   | 160                  | 180 C -            |
| D-c Grid Voltage*        | -560                 | Volts              |
| Peak A-f Grid Voltage    | 660                  | Volts              |
| D-c Plate Current        | 0.58                 | Amperes            |
| Plate Resistance         | 2150                 | Ohms               |
| Load Resistance          | 8600                 | Ohms               |
| Undistorted Power Output | .925                 | Kilowatts          |

22 Inches

4 1/16 Inches

GEH-1122

CLASS B A-F POWER AMPLIFIER AND MODULATOR

|                                           |  | Operation |      | Ratings |           |  |
|-------------------------------------------|--|-----------|------|---------|-----------|--|
| D-c Plate Voltage                         |  | 6000      | 8000 | 10000   | Volts     |  |
| Max Signal D-c Plate Current              |  | 2.3       | 2.1  | 2.04    | Amperes   |  |
| Max Signal Plate InputA                   |  |           |      | 10.5    | Kilowatts |  |
| Plate Dissipation                         |  |           |      | 3.5     | Kilowatts |  |
| Radiator Temperature +                    |  | 140       | 155  | 180     | С         |  |
| D-c Grid Voltage*                         |  | -600      | -800 |         | Volts     |  |
| Peak A-f Grid-to-grid Voltage             |  | 2200      | 2400 |         | Volts     |  |
| Zero Signal D-c Plate Current             |  | 0.5       | 0.5  |         | Amperes   |  |
| Load Resistance, per tube                 |  | 1250      | 1850 |         | Ohms      |  |
| Effective Load Resistance, plate-to plate |  | 5000      | 7400 |         | Ohms      |  |
| Max Signal Driving Power, approx          |  | 260       | 100  |         | Watts     |  |
| Max Signal Power Output, approx           |  | 8         | 10   |         | Kilowatts |  |
|                                           |  |           |      |         |           |  |

A Loopart

Movimum

§ Unless otherwise specified, values are for two tubes.

CLASS B R-F POWER AMPLIFIER-TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage           |  | 6000 | 8000 | 10000 | Volts     |
|-----------------------------|--|------|------|-------|-----------|
| D-c Plate Current           |  | 0.7  | 0.6  | 1.0   | Amperes   |
| Plate Input                 |  |      |      | 5.5   | Kilowatts |
| Plate Dissipation           |  |      |      | 3.5   | Kilowatts |
| Radiator Temperature +      |  | 140  | 160  | 180   | C         |
| D-c Grid Voltage¶           |  | -600 | -820 |       | Volts     |
| Peak R-f Grid Voltage       |  | 600  | 700  |       | Volts     |
| Driving Power, approx $\pi$ |  | 82   | 0    |       | Watts     |
| Power Output, approx        |  | 1    | 1.3  |       | Kilowatts |

CLASS C PLATE-MODULATED R-F POWER AMPLIFIER-TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage      | 6000  | 8500  | Volts     |
|------------------------|-------|-------|-----------|
| D-c Grid Voltage       | -2000 | -3000 | Volts     |
| D-c Plate Current      | 0.75  | 1.0   | Ampere    |
| D-c Grid Current       | 0.1   | 0.15  | Ampere    |
| Plate Input            |       | 8     | Kilowatts |
| Plate Dissipation      |       | 2.5   | Kilowatts |
| Radiator Temperature † | 90    | 180   | С         |
| Peak R-f Grid Voltage  | 2650  |       | Volts /   |
| Driving Power, approx  | 260   |       | Watts     |
| Power Output, approx   | 3.5   |       | Kilowatts |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - TELEGRAPHY. Key-down conditions per tube without modulation;

| D-c Plate Voltage                          | 8000  | 10000 |      | 10000 | Volts     |
|--------------------------------------------|-------|-------|------|-------|-----------|
| D-c Grid Voltage                           | -1800 | -2000 |      | -3000 | Volts     |
| D-c Plate Current                          | 1.1   | 1.4   |      | 2.0   | Amperes   |
| D-c Grid Current                           | 0.06  | 0.11  |      | 0.15  | Ampere    |
| Plate Input                                |       |       |      | 15    | Kilowatts |
| Plate Dissipation                          |       |       |      | 4     | Kilowatts |
| Peak R-f Grid Voltage                      | 2500  | 2900  |      | 512   | Volts     |
| Radiator Temperature +                     | 120   | 160   |      | 180   | C         |
| Driving Power, approx                      | 150   | 310   |      |       | Watts     |
| Power Output, approx                       | 6.5   | 10    |      |       | Kilowatts |
| MAXIMUM PLATE DISSIPATION VS AIR FLOW RATE |       |       |      |       |           |
| Air Flow Rate, cfm:                        | 400   | 450   | 500  | 60    | 0 700     |
| Max Plate Dissipation, Watts:              |       |       |      |       |           |
| Class A                                    | 3250  | 3500  | 3750 | 425   | 4650      |

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

#### MAXIMUM PLATE DISSIPATION VS AIR FLOW RATE (CONT'D)

Max Plate Dissipation, Watts (Cont'd):

| Class B, | A-f        | 3250 | 3500 | 3750 | 4250 | 4650 |
|----------|------------|------|------|------|------|------|
| Class B, | R-f        | 3250 | 3500 | 3750 | 4250 | 4650 |
| Class C, | Telephony  | 2300 | 2500 | 2700 | 3000 | 3300 |
| Class C, | Telegraphy | 3700 | 4000 | 4300 | 4850 | 5300 |

+ Measured in thermometer well.

\* With a-c filament supply.

 $\Delta$  Averaged over any audio-frequency cycle of sine-wave form.

¶ With d-c filament supply.

 $\pi$  At crest of a-f cycle with modulation factor of 1.0

**+** Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-891-R can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 10 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                            | 1.6 | 7.5 | 20 | Mc       |
|--------------------------------------|-----|-----|----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF    |     |     |    |          |
| MAXIMUM RATED PLATE VOLTAGE AND      |     |     |    |          |
| PLATE INPUT:                         |     |     |    |          |
| Class B telephony                    | 100 | 83  | 74 | Per Cent |
| Class C telephony, plate modulation) | 100 | 75  | 50 | Pon Cont |
| telegraphy )                         | -00 | 12  |    | Ter Cent |







GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

Supersedes GET-914

# GENERAL 🍘 ELECTRIC

# Transmitting Tube GL-892—Description and Rating

The 892 is a three-electrode transmitting tube of the double-filament type for use as a radio-frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating current as well as from direct current, for all classes of service. The plate is water-cooled and is capable of dissipating 6.6 to 10 kilowatts, depending on the service in which the tube is used.

These data are for reference only. For design information, see the specifications.

| Filament                                       | Tungsten   | n, Two-u | unit Type   |         |          |
|------------------------------------------------|------------|----------|-------------|---------|----------|
| Excitation                                     | 10 A-C,    | ZØ A-C   | or D-C      | Vo      | 1+0      |
| Voltage, per unit                              |            | 11       |             | ٨m      | 105      |
| Current, per unit                              |            | 00       |             | Am      | þ        |
| Amplification Factor                           |            | 50       |             |         |          |
| Direct Interelectrode Capacitances:            |            |          |             |         |          |
| Grid to Plate                                  |            | 27       |             | ЧЦ      | f        |
| Grid to Filament                               |            | 18       |             | μų      | f        |
| Plate to Filament                              |            | 2        |             | ЧЦ      | f        |
| Maximum Over-all Length                        |            |          |             | 20      | -5/8 in. |
| Maximum Radius                                 |            |          |             | 6-      | 1/2 in.  |
| Can                                            |            |          |             | No      | . 3950   |
| Base                                           |            |          |             | No      | . 3232   |
| Water Jacket                                   |            |          |             | UT      | -1285A   |
| Cooling - Water flow of 3 to 8 gallons per mir | nute must  | start 1  | pefore appl | ication | of       |
| any voltages and continue for at les           | ast 5 minu | ites af  | ter removal | of vol  | t-       |
| ages. Water temperature must not ex            | ceed 70 C  | under    | any condit  | ions of |          |
| operation.                                     |            |          |             |         |          |
| MANTHIN DAMING AND MUTCAI                      |            | NI CONDI | TONS        |         |          |
| MAXIMUM RATINGS AND TYPICAL                    | J OPERATIC | IN COND. | TIONS       |         |          |
| A-F POWER AMPLIFIER AND MODULATOR - CLASS B    |            |          |             |         |          |
| D-c Plate Voltage                              |            |          | 15000 max   | Volts   |          |
| Max-signal D-c Plate Current *                 |            |          | 2.0 max     | Amp     |          |
| Max-signal Plate Input *                       |            |          | 20 max      | Kw      |          |
| Plate Dissipation                              |            |          | 7.5 max     | Kw      |          |
| Typical Operation:                             |            |          |             |         |          |
| Unless otherwise specified, values are for 2   | 2 tubes.   |          |             |         |          |
| D-c Plate Voltage                              | 6000       | 10000    | 12500       | Volts   |          |
| D-c Grid Voltage †                             | 0          | -90      | -170        | Volts   |          |
| Peak A-f Grid-to-Grid Voltage                  | 1200       | 1620     | 1530        | Volts   |          |
| Zero-signal D-c Plate Current                  | 0.5        | 0.5      | 0.4         | Amp     |          |
| Max-signal D-c Plate Current                   | 2.5        | 3.2      | 2.8         | Amp     |          |
| Load Resistance (per tube)                     | 1050       | 1600     | 2500        | Ohms    |          |
| Effective Load Resistance (plate-to-plate)     | 4200       | 6400     | 10000       | Ohms    |          |
| Max-signal Driving Power                       | 415        | 525      | 420         | Approx  | watts    |
| Max-signal Power Output                        | 8          | 20       | 22          | Approx  | kw       |
| R-F POWER AMPLIFIER - CLASS B TELEPHONY        |            |          |             |         |          |
| Carrier conditions per tube for use with a may | kimum modu | lation   | factor of   | 1.0     |          |
| D-c Plate Voltage                              |            |          | 15000 max   | Volts   |          |
| D-c Plate Current                              |            |          | 1.0 max     | Amp     |          |
| R-f Grid Current                               |            |          | 24 max      | Amp     |          |
|                                                |            |          |             |         |          |

| Plate Input                                                     |             |       | 15 max    | Kw     |       |
|-----------------------------------------------------------------|-------------|-------|-----------|--------|-------|
| Plate Dissipation                                               |             |       | 10 max    | Kw     |       |
| Typical Operation:                                              |             |       |           |        |       |
| Filament Voltage - See Filament Connections                     | under Type  | 891.  |           |        |       |
| D-c Plate Voltage                                               | 6000        | 10000 | 14000     | Volts  |       |
| D-c Grid Voltage †                                              | 0           | -100  | -190      | Volts  |       |
| Peak R-f Grid Voltage                                           | 300         | 470   | 510       | Volts  |       |
| D-c Plate Current                                               | 0.67        | 0.93  | 0.95      | Amp    |       |
| Driving Power <sup>0</sup>                                      | 65          | 50    | 30        | Approx | watts |
| Power Output                                                    | i           | 2.5   | 4         | Approx | kw    |
| PLATE-MODILATED R-F POWER AMPLIFIER - CLASS C                   | TELEPHONY   |       |           |        |       |
| Carrier conditions per tube for use with a max                  | ximum modul | ation | factor of | 1.0    |       |
| D a Plata Valtaga                                               |             |       | 10000 mor | Volta  |       |
| D-c Place Voltage                                               |             |       | XBM 00001 | Volts  |       |
| D-c Grid Voltage                                                |             |       | -9000 max | Amm    |       |
| D-c Flate current                                               |             |       | 1.0 max   | Amp    |       |
| D-C Grid Current                                                |             |       | 0.25 max  | Amp    |       |
| R-1 Grid Current                                                |             |       | 24 max    | Amp    |       |
| Plate Input                                                     |             |       | 10 max    | NW     |       |
| Trate Dissipation                                               |             |       | o.o max   | KW     |       |
| Typical operation:<br>Filement Veltage See Filement Connections | unden Mrne  | 801   |           |        |       |
| Plate Voltage - See Flament Connections                         | Good        | 8000  | 10000     | Valta  |       |
|                                                                 | 1000        | 1300  | 10000     | VOILS  |       |
| Deck D & Orid Veltere                                           | -1000       | -1500 | -1000     | VOLUS  |       |
| Peak K-I Grid Voltage                                           | 10/5        | 2000  | 2400      | VOLUS  |       |
| D-c Plate Current                                               | 0.77        | 0.15  | 0.72      | Amp    |       |
| D-c Gria Current                                                | 0.185       | 0.175 | 0.115     | Approx | amp   |
| Driving Power                                                   | 310         | 350   | 260       | Approx | watts |
| Power Output                                                    | 2.5         | 5     | 0         | Approx | KW    |
| R-F POWER AMPLIFIER AND OSCILLATOR - CLASS C 7                  | TELEGRAPHY  |       |           |        |       |
| Key-down conditions per tube without modulation                 | on ††       |       |           |        |       |
| D-c Plate Voltage                                               |             |       | 15000 max | Volts  |       |
| D-c Grid Voltage                                                |             |       | -3000 max | Volts  |       |
| D-c Plate Current                                               |             |       | 2.0 max   | Amp    |       |
| D-c Grid Current                                                |             |       | 0.25 max  | Amp    |       |
| R-f Grid Current                                                |             |       | 30 max    | Amp    |       |
| Plate Input                                                     |             |       | 30 max    | Kw     |       |
| Plate Dissipation                                               |             |       | 10 max    | Kw     |       |
| Typical Operation:                                              |             |       |           |        |       |
| Filament Voltage - See Filament Connections                     | under Type  | 891.  |           |        |       |
| D-c Plate Voltage                                               | 8000        | 10000 | 12000     | Volts  |       |
| D-c Grid Voltage                                                | -1000       | -1300 | -1600     | Volts  |       |
| Peak R-f Grid Voltage                                           | 1800        | 2300  | 2800      | Volts  |       |
| D-c Plate Current                                               | 1.1         | 1.4   | 1.64      | Amp    |       |
| D-c Grid Current                                                | 0.18        | 0.18  | 0.18      | Approx | amp   |
| Driving Power                                                   | 320         | 400   | 500       | Approx | watts |
| Power Output                                                    | 6.5         | 10    | 14        | Approx | kw    |
| * Averaged over any audio-frequency cycle of                    | f sine-wave | form. |           |        |       |

t With d-c filament supply.

<sup>O</sup> At crest of a-f cycle with modulation factor of 1.0.

tt Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-892 can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under MAXIMUM RATING). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 20 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                            | 1.6 | 7.5 | 20 | Mc       |
|----------------------------------------------------------------------|-----|-----|----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND |     |     |    |          |
| PLATE INPUT:                                                         |     |     |    |          |
| Class B telephony                                                    | 100 | 82  | 72 | Per Cent |
| Class C Plate-modulated                                              | 100 | 75  | 65 | Per Cent |
| Unmodulated                                                          | 100 | 75  | 50 | Per Cent |



Constant Current Plate and Grid Characteristics for Transmitting Tube GL-892 K-7000138 9-29-39



Grid-current Characteristics for Transmitting Tube GL-892 K-7000142 10-24-39



Average Plate Characteristics for Transmitting Tube GL-392 K-7000113 9-29-39





www.SteamPoweredRadio.Com

# GENERAL C ELECTRIC

## Transmitting Tube GL-892-R--Description and Rating

The 892-R is a three-electrode transmitting tube for use as a radio-frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating current, as well as from direct current, for all classes of service. The plate of the 892-R is air-cooled by means of a special radiator which is fitted to the tube by the manufacturer. The plate is capable of dissipating 2 to 5 kilowatts of power, depending on the service in which the tube is used.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications. GENERAL CHARACTERISTICS

#### Electrical

| Filament                                   | Two-u | nit Type |
|--------------------------------------------|-------|----------|
| Voltage per unit                           | 11    | Volts    |
| Current per unit                           | 60    | Amperes  |
| Amplification Factor                       | 50    |          |
| Direct Interelectrode Capacitances, approx |       | -        |
| Grid - Plate                               | 30    | uuf      |
| Grid - Filament                            | 18    | uuf      |
| Plate - Filament                           | 2     | uuf      |

#### Mechanical

Cooling - Air flow of 450 cfm normal must be started before application of any voltages and continue for at least 10 minutes after removal of voltages. See table on page 2. Base Description - See Outline Mounting Position - Vertical

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER AND MODULATOR

|                                            | Typ<br>Oper | ical<br>ation | Maximum<br>Ratings |           |
|--------------------------------------------|-------------|---------------|--------------------|-----------|
| D-c Plate Voltage                          | 6000        | 8000          | 12500              | Volts     |
| Max Signal D-c Plate Current               | 2.5         | 2.3           | 2.0                | Amperes   |
| Max Signal Plate Input()                   |             |               | 12                 | Kilowatts |
| Plate Dissipation                          |             |               | 4                  | Kilowatts |
| Radiator Temperature*                      |             |               | 180 C              |           |
| D-c Grid Voltaget                          | 0           | -60           |                    | Volts     |
| Peak A-f Grid-to-grid Voltage              | 1200        | 1000          |                    | Volts     |
| Zero Signal D-c Plate Current              | 0.5         | 0.5           |                    | Amperes   |
| Radiator Temperature*                      | 140 C       | 158           | C                  |           |
| Load Resistance (per tube)                 | 1050        | 1700          |                    | Ohms      |
| Effective Load Resistance (plate-to-plate) | 4200        | 6800          |                    | Ohms      |
| Max Signal Driving Power, approx           | 415         | 400           |                    | Watts     |
| Max Signal Power Output, approx            | 8           | 10.5          |                    | Kilowatts |

Unless otherwise specified, values are for two tubes.

#### CLASS B R-F AMPLIFIER - TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0

|                        | יד<br><u>סס</u> | ypical<br>eration | Maximum<br>Ratings |           |
|------------------------|-----------------|-------------------|--------------------|-----------|
| D-c Plate Voltage      | 6000            | 8000              | 12500              | Volts     |
| D-c Plate Current      | 0.67            | 0.71              | 1.0                | Amperes   |
| Plate Input            |                 |                   | 6                  | Kilowatts |
| Plate Dissipation      |                 |                   | 4                  | Kilowatts |
| Radiator Temperature*  | 140             | C 160 C           | 180 C              |           |
| D-c Grid Voltage‡      | 0               | -40               |                    | Volts     |
| Peak R-f Grid Voltage∆ | 300             | 350               |                    | Volts     |
| Driving Power, approx  | 65              | 25                |                    | Watts     |
| Power Output, approx   | 1               | 1.7               |                    | Kilowatts |

CLASS C PLATE-MODULATED R-F POWER AMPLIFIER - TELEPHONY Carrier conditions per tube for use with max modulation factor of 1.0

| D-c Plate Voltage        |  | 6000  | 80  | 000 |   | 10000 |   | Volts     |
|--------------------------|--|-------|-----|-----|---|-------|---|-----------|
| D-c Grid Voltage         |  | -1000 | -13 | 500 |   | -3000 |   | Volts     |
| D-c Plate Current        |  | 0.77  | 0.  | 75  |   | 1.0   |   | Amperes   |
| D-c Grid Current         |  |       |     |     |   | 0.25  |   | Ampere    |
| Plate Input              |  |       |     |     |   | 10    |   | Kilowatts |
| Plate Dissipation        |  |       |     |     |   | 2.5   |   | Kilowatts |
| Radiator Temperature* •  |  | 90    | C   | 90  | С | 180   | C |           |
| Peak R-f Grid Voltage    |  | 1675  | 20  | 00  |   |       |   | Volts     |
| D-c Grid Current, approx |  | 0.19  | Ο.  | 18  |   |       |   | Ampere    |
| Driving Power, approx    |  | 310   | 3   | 50  |   |       |   | Watts     |
| Power Output, approx     |  | 3.5   |     | 5   |   |       |   | Kilowatts |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - TELEGRAPHY Key-down conditions per tube without modulation§

| D-c Plate Voltage        | 8000  | - 1 | L0000 |   | 12500 |   | Volts     |
|--------------------------|-------|-----|-------|---|-------|---|-----------|
| D-c Grid Voltage         | -1000 |     | -1300 |   | -3000 |   | Volts     |
| D-c Plate Current        | 1.1   |     | 1.4   |   | 2.0   |   | Amperes   |
| D-c Grid Current         |       |     |       |   | 0.25  |   | Ampere    |
| Plate Input              |       |     |       |   | 18    |   | Kilowatts |
| Plate Dissipation        |       |     |       |   | 4     |   | Kilowatts |
| Radiator Temperature*    | 120   | C   | 160   | С | 180   | С |           |
| Peak R-f Grid Voltage    | 1800  |     | 2300  |   |       |   | Volts     |
| D-c Grid Current, approx | 0.18  |     | 0.18  |   |       |   | Ampere    |
| Driving Power, approx    | 320   |     | 400   |   |       |   | Watts     |
| Power Output, approx     | 6.5   |     | 10    |   |       |   | Kilowatts |
|                          |       |     |       |   |       |   |           |

MAXIMUM PLATE DISSIPATION VS AIR FLOW RATE

| Air Flow Rate, cfm:           | 400  | 450  | 500  | 600  | 700  |
|-------------------------------|------|------|------|------|------|
| Max Plate Dissipation, Watts: |      |      |      |      |      |
| Class B, A-f                  | 3700 | 4000 | 4300 | 4850 | 5300 |
| Class B, R-f                  | 3700 | 4000 | 4300 | 4850 | 5300 |
| Class C, Telephony            | 2300 | 2500 | 2700 | 3000 | 3300 |
| Class C, Telegraphy           | 3700 | 4000 | 4300 | 4850 | 5300 |
|                               |      |      |      |      |      |

◊ Averaged over any audio-frequency cycle.

+ With a-c filament excitation.

\* Measured in thermometer well.

+ With d-c filament excitation.

 $\bigtriangleup$  At crest of A-f cycle with modulation factor of 1.0.

§ Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier condition. GL-892-R can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 10 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 1.6 | 7.5 | 20  | Mc       |
|--------------------------------------------------------------------------------------|-----|-----|-----|----------|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT. |     |     |     |          |
| Class B telephony                                                                    | 100 | 85  | 76  | Per cent |
| Class C (telephony, plate modulated (telegraphy                                      | 100 | 75  | 50  | Per cent |
|                                                                                      | Г   | Max | MIT |          |



MID. 22" A B 163 16 1016 9 te C D 68 68 5番 516 Ε 78 716 F G 832 73 H 62 416 J K 10 .505 495 L .442 .432 M 2 N .442 .432 P R .46 576 576 5



Outline Transmitting Tube GL-892-R K-6966980 11-13-41



Average Plate Characteristics for Transmitting Tube GL-892-R K-8639397 3-25-44





Grid-current Characteristics for Transmitting Tube GL-892-R K-8639396 3-25-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.



# Transmitting Tube GL-893-A--Description and Rating

The GL-893-A is a three-electrode, water-cooled vacuum tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. A particular advantage of this tube is the unique construction of the filament which permits operation from single-phase, three-phase, or six-phase alternating current, or from direct current, for all classes of service.

#### TECHNICAL INFORMATION

#### CHARACTERISTICS AND RATINGS

ELECTRICAL

| Filament Voltage, per strand                                                                                                                                                                                                                                                                     | 10    | Volts                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------|
| Filament Current, per terminal                                                                                                                                                                                                                                                                   | 61    | Amperes                                                |
| Amplification Factor $E_b = 15 \text{ kv}, I_b = 1.0 \text{ amp}$                                                                                                                                                                                                                                | 36    |                                                        |
| Grid-plate Transconductance $E_c = -300, E_f = 20 a-c$                                                                                                                                                                                                                                           | 16000 | Micromhos                                              |
| Direct Interelectrode Capacitances:                                                                                                                                                                                                                                                              |       |                                                        |
| Grid-plate                                                                                                                                                                                                                                                                                       | 33    | μμſ                                                    |
| Input                                                                                                                                                                                                                                                                                            | 48    | μμſ                                                    |
| Output                                                                                                                                                                                                                                                                                           | 3.2   | μμſ                                                    |
| Frequency for Maximum Ratings                                                                                                                                                                                                                                                                    | 5     | Megacycles                                             |
| MECHANICAL                                                                                                                                                                                                                                                                                       |       |                                                        |
| Gasket, Cat. No. 5182028P2                                                                                                                                                                                                                                                                       |       |                                                        |
|                                                                                                                                                                                                                                                                                                  |       |                                                        |
| Type of Cooling                                                                                                                                                                                                                                                                                  | Water | and Forced Air                                         |
| Type of Cooling<br>Water Flow, gallons per minute                                                                                                                                                                                                                                                | Water | and Forced Air<br>8-15                                 |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute                                                                                                                                                                                                             | Water | and Forced Air<br>8-15                                 |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute<br>To Stem                                                                                                                                                                                                  | Water | and Forced Air<br>8-15                                 |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute<br>To Stem<br>Net Weight, approx                                                                                                                                                                            | Water | and Forced Air<br>8-15<br>2<br>12 lb                   |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute<br>To Stem<br>Net Weight, approx<br>Shipping Weight, approx                                                                                                                                                 | Water | and Forced Air<br>8-15<br>2<br>12 lb<br>27 lb          |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute<br>To Stem<br>Net Weight, approx<br>Shipping Weight, approx<br>Installation and Operation                                                                                                                   | Water | and Forced Air<br>8-15<br>2<br>12 1b<br>27 1b<br>ET-H1 |
| Type of Cooling<br>Water Flow, gallons per minute<br>Air Flow, cubic feet per minute<br>To Stem<br>Net Weight, approx<br>Shipping Weight, approx<br>Installation and Operation                                                                                                                   | Water | and Forced Air<br>8-15<br>2<br>12 1b<br>27 1b<br>ET-H1 |
| <pre>Type of Cooling Water Flow, gallons per minute Air Flow, cubic feet per minute To Stem Net Weight, approx Shipping Weight, approx Installation and Operation MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS</pre>                                                                         | Water | and Forced Air<br>8-15<br>2<br>12 lb<br>27 lb<br>ET-H1 |
| <pre>Type of Cooling<br/>Water Flow, gallons per minute<br/>Air Flow, cubic feet per minute<br/>To Stem<br/>Net Weight, approx<br/>Shipping Weight, approx<br/>Installation and Operation<br/>MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS<br/>CLASS B A-F POWER AMPLIFIER (TWO TUBES)</pre> | Water | and Forced Air<br>8-15<br>2<br>12 lb<br>27 lb<br>ET-H1 |

| D-c Plate Voltage                 | 12000 | 15000 | 18000 | 20000 | max | Volts     |
|-----------------------------------|-------|-------|-------|-------|-----|-----------|
| Max Signal Plate Current, per tul | be*   |       |       | 4.0   | max | Amperes   |
| D-c Max Signal Plate Input,       |       |       |       |       |     |           |
| per tube*                         |       |       |       | 60    | max | Kilowatts |
| Plate Dissipation, per tube*      |       |       |       | 20    | max | Kilowatts |
| D-c Grid Voltage                  | -260  | -350  | -450  |       |     | Volts     |
| Peak A-f Grid Input Voltage       | 1480  | 1560  | 1720  |       |     | Volts     |
| Zero Signal Plate Current         | 0.8   | 0.8   | 0.8   |       |     | Ampere    |
| Max Signal Plate Current          | 7.0   | 6.0   | 5.5   |       |     | Amperes   |
| Max Signal Plate Input*           | 84.0  | 90.0  | 99.0  |       |     | Kilowatts |
| Max Signal Driving Power, approx  | 220   | 190   | 140   |       |     | Watts .   |
| Effective Load Resistance,        |       |       |       |       |     |           |
| Plate-to-plate                    | 4000  | 6000  | 8000  |       |     | Ohms      |
| Max Signal Plate Power Output     | 52.0  | 60.0  | 70.0  |       |     | Kilowatts |
|                                   |       |       |       |       |     |           |

#### CLASS B R-F POWER AMPLIFIER

Carrier conditions per tube for use with a max modulation factor 1.0

| D-c Plate Voltage           | 12000 | 15000 | 15000 | 20000 | max | Volts     |
|-----------------------------|-------|-------|-------|-------|-----|-----------|
| D-c Grid Voltage            | -250  | -340  | -340  |       |     | Volts     |
| D-c Plate Current           | 1.5   | 1.5   | 2.0   | 2.0   | max | Amperes   |
| Plate Input                 |       |       |       | 32    | max | Kilowatts |
| Plate Dissipation           |       |       |       | 20    | max | Kilowatts |
| Peak R-f Grid Input Voltage | 700   | 790   | 900   |       |     | Volts     |
| Driving Power, approx **    | 130   | 150   | 200   |       |     | Watts     |
| Plate Power Output          | 6     | 7.5   | 10    |       |     | Kilowatts |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

| D-c Plate Voltage            | 10000      | 10000 | 12000 | 12000 | max | Volts     |
|------------------------------|------------|-------|-------|-------|-----|-----------|
| D-c Grid Voltage             | -800       | -800  | -1000 | -3000 | max | Volts     |
| D-c Plate Current            | 1.5        | 2.0   | 2.0   | 2.0   | max | Amperes   |
| D-c Grid Current, approx     | 0.10       | 0.16  | 0.14  | 0.4   | max | Amperes   |
| Plate Input                  |            |       |       | 24    | max | Kilowatts |
| Plate Dissipation            |            |       |       | 12    |     | Kilowatts |
| Peak R-f Grid Input Voltage, | approx1200 | 1280  | 1500  |       |     | Volts     |
| Driving Power, approx        | 120        | 210   | 210   |       |     | Watts     |
| Plate Power Output           | 11         | 15    | 18    |       |     | Kilowatts |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation

| D-c Plate Voltage                 | 12000   | 15000 | 18000 | 20000 | max | Volts     |
|-----------------------------------|---------|-------|-------|-------|-----|-----------|
| D-c Grid Voltage                  | -800    | -900  | 1000  | -3000 | max | Volts     |
| D-c Plate Current                 | 3.5     | 3.6   | 3.6   | 4.0   | max | Amperes   |
| D-c Grid Current, approx          | 0.26    | 0.25  | 0.21  | 0.4   | max | Amperes   |
| Plate Input                       |         |       |       | 70    | max | Kilowatts |
| Plate Dissipation                 |         |       |       | 20    | max | Kilowatts |
| Peak R-f Grid Input Voltage, appr | ox 1430 | 1520  | 1630  |       |     | Volts     |
| Driving Power, approx             | 360     | 370   | 340   |       |     | Watts     |
| Plate Power Output                | 30      | 40    | 50    |       |     | Kilowatts |
|                                   |         |       |       |       |     |           |

\* Averaged over any audio-frequency cycle.

\*\* At crest of audio-frequency cycle.

# Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

GL-893 can be operated at maximum ratings in all classes of service at frequencies as high as 5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (Other maximum ratings are the same as shown under CHARACTERISTICS and RATINGS.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 40 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| FREQUENCY                                                                            | 5   | 20 | 40 |
|--------------------------------------------------------------------------------------|-----|----|----|
| MAXIMUM PERMISSIBLE PERCENTAGE OF<br>MAXIMUM RATED PLATE VOLTAGE AND<br>PLATE INPUT: |     |    |    |
| Class B R-f                                                                          |     |    |    |
| Percentage Plate Voltage                                                             | 100 | 85 | 65 |
| Percentage Plate Input                                                               | 100 | 82 | 73 |
| Class C Plate Modulated                                                              |     |    |    |
| Percentage Plate Voltage                                                             | 100 | 80 | 64 |
| Percentage Plate Input                                                               | 100 | 75 | 64 |
| Class C                                                                              |     |    |    |
| Percentage Plate Voltage                                                             | 100 | 80 | 60 |
| Percentage Plate Input                                                               | 100 | 66 | 50 |
|                                                                                      |     |    |    |

#### APPLICATION NOTES

Plate Series Protective Resistors (see paragraph describing plate circuit under Installation in the Instructions).

| Series Resistor, ohms   | 10 | 20  | 40  | 80  | 100  |
|-------------------------|----|-----|-----|-----|------|
| Maximum Power Output of | 40 | 100 | 250 | 640 | 1600 |
| Recuiller, Kilowatus    | 40 | 100 | 250 | 040 | 1000 |



FILAMENT BASE TERMINALS



|   | Min.   | MAL    |
|---|--------|--------|
| ~ | .687   | 310.   |
| B | .561   | .571   |
| C | 2.000  | 2.750  |
| D | 5.870  | 6,130  |
| E | 14.000 | 15.000 |
| F | 1.500  | 3.060  |
| G | 5.625  | 6.375  |
| H | 3.810  | 4.060  |
| 1 | 7.375  | 8.125  |
| J | .480   | .520   |
| ĸ | 4.672  | 4.702  |
| L | 3.125  | 3.250  |
| M | 9.000  | 9.500  |
| N | 24.500 | 26.750 |
| _ |        |        |

Mc

Outline Transmitting Tube

AVAILABLE STRAIGHT

GL-893-A K-5344783 2-11-42

Average Filament Characteristic K-8074643 5-5-44



NOTE: Terminals must be connected in correct phase relation as shown K-7050604 Filament Connections and Excitation Circuits 5-29-39

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

5-44 (8000) Filing No. 8850.

Supersedes GET-766A



# GENERAL 🛞 ELECTRIC

### **Transmitting Tube GL-893-R -- Description and Rating**

#### Description

The GL-893-R is a three-electrode, forced air-cooled vacuum tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. A particular advantage of this tube is the unique construction of the filament which permits operation from single-phase, three-phase, or six-phase alternating current, or from direct current, for all classes of service.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

#### GENERAL CHARACTERISTICS

| ELECTRICAL                                                                                                       |            |                     |
|------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| Filament Voltage (per strand)                                                                                    | 10         | Volts               |
| Filament Current (per terminal)                                                                                  | 61         | Amperes             |
| Amplification Factor, $E_b = 15 \text{ kv}$ , $I_b = 1.0 \text{ amp}$ ,<br>$E_c = -300$ , $E_f = 20 \text{ a-c}$ | 36         |                     |
| Grid-plate Transconductance                                                                                      | 16000      | Micromhos           |
| Direct Interelectrode Capacitances, µµf                                                                          |            |                     |
| Grid-plate                                                                                                       | 33         |                     |
| Grid-filament                                                                                                    | 48         |                     |
| Plate-filament                                                                                                   | 3.2        |                     |
| MECHANICAL                                                                                                       |            |                     |
| Type of Cooling                                                                                                  | Forced Air |                     |
| To radiator                                                                                                      | 1800       | Cu ft per<br>minute |
| To stem                                                                                                          | 2          | Cu ft per<br>minute |
| Net Weight (approx)                                                                                              | 230        | Pounds              |
| Shipping Weight (approx)                                                                                         | 290        | Pounds              |
| Installation and Operation                                                                                       | GEH-1198   |                     |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                                                                                        |       | Operation | <u>1</u> | Ratings |           |  |  |
|--------------------------------------------------------------------------------------------------------|-------|-----------|----------|---------|-----------|--|--|
| CLASS B A-F POWER AMPLIFIER (TWO TUBES)                                                                |       |           |          |         |           |  |  |
| D-c Plate Voltage                                                                                      | 12000 | 15000     | 18000    | 20000   | Volts     |  |  |
| Max Signal Plate Current (per tube)+                                                                   |       |           |          | 4.0     | Amperes   |  |  |
| D-c Max Signal Plate Input (per tube)+                                                                 |       |           |          | 60      | Kilowatts |  |  |
| Plate Dissipation (per tube)+                                                                          |       |           |          | 20      | Kilowatts |  |  |
| Radiator Temperature;                                                                                  |       |           |          | 180     | C         |  |  |
| D-c Grid Voltage                                                                                       | -260  | -350      | -450     |         | Volts     |  |  |
| Peak A-f Grid Input Voltage                                                                            | 1480  | 1560      | 1720     |         | Volts     |  |  |
| Zero Signal Plate Current                                                                              | 0.8   | 0.8       | 0.8      |         | Amperes   |  |  |
| Max Signal Plate Current                                                                               | 7.0   | 6.0       | 5.5      |         | Amperes   |  |  |
| Max Signal Plate Inputt                                                                                | 84    | 90        | 99       |         | Kilowatts |  |  |
| Max Signal Driving Power (approx)                                                                      | 220   | 190       | 140      |         | Watts     |  |  |
| Effective Load Resistance (plate-to-plate)                                                             | 4000  | 6000      | 8000     |         | Ohms      |  |  |
| Max Signal Plate Power Output                                                                          | 52    | 60        | 70       |         | Kilowatts |  |  |
| CLASS B R-F POWER AMPLIFIER<br>Carrier conditions per tube for use with a max modulation factor of 1.0 |       |           |          |         |           |  |  |
| D-c Plate Voltage                                                                                      | 12000 | 15000     | 15000    | 20000   | Volts     |  |  |
| D-c Grid Voltage                                                                                       | -250  | -340      | -340     |         | Volts     |  |  |
| D-c Plate Current                                                                                      | 1.5   | 1.5       | 2.0      | 2.0     | Amperes   |  |  |

|                                                                                                                                                                                   |                              | Typical<br>Operation         |                               | Maximum<br>Ratings                              | *                                                                  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Plate Input<br>Plate Dissipation<br>Radiator Temperature‡<br>Peak R-f Grid Input Voltage§<br>Driving Power (approx)§<br>Plate Power Output                                        | 700<br>130<br>6              | 790<br>150<br>7•5            | 900<br>200<br>10              | 32<br>20<br>180                                 | Kilowatts<br>Kilowatts<br>C<br>Volts<br>Watts<br>Kilowatts         |  |  |  |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED<br>Carrier conditions per tube for use with a max modulation factor of 1.0                                           |                              |                              |                               |                                                 |                                                                    |  |  |  |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Radiator Temperature:<br>(Modulation Factor = 1.0) | 10000<br>-800<br>1.5<br>0.10 | 10000<br>-800<br>2.0<br>0.16 | 12000<br>-1000<br>2.0<br>0.14 | 12000<br>-3000<br>2.0<br>0.4<br>24<br>12<br>180 | Volts<br>Volts<br>Amperes<br>Ampere<br>Kilowatts<br>Kilowatts<br>C |  |  |  |
| Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output                                                                                              | 1200<br>120<br>11            | 1280<br>210<br>15            | 1500<br>210<br>18             |                                                 | Volts<br>Watts<br>Kilowatts                                        |  |  |  |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>Key-down conditions per tube without modulat                                                                                        | ion¶                         |                              |                               |                                                 |                                                                    |  |  |  |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current (approx)<br>Plate Input<br>Plate Dissipation<br>Radiator Temperature:                              | 12000<br>-800<br>3.5<br>0.26 | 15000<br>-900<br>3.6<br>0.25 | 18000<br>-1000<br>3.6<br>0.21 | 20000<br>-3000<br>4.0<br>0.4<br>70<br>20<br>180 | Volts<br>Volts<br>Amperes<br>Ampere<br>Kilowatts<br>Kilowatts<br>C |  |  |  |
| Peak R-f Grid Input Voltage (approx)<br>Driving Power (approx)<br>Plate Power Output                                                                                              | 1430<br>360<br>30            | 1520<br>370<br>40            | 1630<br>340<br>50             |                                                 | Volts<br>Watts<br>Kilowatts                                        |  |  |  |

+ Averaged over any audio-frequency cycle.

# Measured in the thermometer well. This temperature corresponds to the maximum ratings when the air-flow is 1800 cubic feet per minute and the temperature of the incoming air does not exceed 45 C. The glass temperature must not be allowed to exceed 150 C.

- § At crest of audio-frequency cycle.
- I Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

\* The GL-893-R can be operated at frequencies as high as 5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 25 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.



If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



Filament Connections and Excitation Circuits K-7050604 5-22-39

GENERAL ELECTRIC COMPANY SCHENECTADY, N.Y. GENERAL B ELECTRIC

# Transmitting Tube GL-898A--Description and Rating

The 898A is a three-electrode power tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. The filament consists of three sections and can be operated on d-c, single-phase, or three-phase filament excitation.

#### **TECHNICAL INFORMATION**

| These data are for reference only. For design cations.                                                                                                                                                                                                               | information s          | ee the specifi-                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|
| GENERAL CHARACTERISTICS                                                                                                                                                                                                                                              |                        |                                    |
| Number of Electrodes                                                                                                                                                                                                                                                 | 3                      |                                    |
| Electrical                                                                                                                                                                                                                                                           |                        |                                    |
| Cathode - Filamentary<br>Filament Voltage, per section<br>Filament Current, per section                                                                                                                                                                              | <b>33</b><br>70        | Volts<br>Amperes                   |
| Average Characteristics, Eb = 20.5 kv Ib = 3.0 ampere                                                                                                                                                                                                                | 8                      |                                    |
| $E_{f} = 33$ volts                                                                                                                                                                                                                                                   | -100                   | Volts                              |
| Amplification Factor                                                                                                                                                                                                                                                 | 45                     |                                    |
| Grid-plate Transconductance, I <sub>b</sub> = 3.0 amperes                                                                                                                                                                                                            | 17500                  | Micromhos                          |
| Direct Interelectrode Capacitances<br>Grid-plate                                                                                                                                                                                                                     | 62                     | Micromicrofarad                    |
| Grid-filament                                                                                                                                                                                                                                                        | 52<br>4,2              | Micromicrofarad<br>Micromicrofarad |
| Proguency for Maximum Patings                                                                                                                                                                                                                                        | 1.6                    | Megacycles                         |
| Frequency for Maximum Racings                                                                                                                                                                                                                                        | 1.0                    | Mogacyoros                         |
| Mechanical                                                                                                                                                                                                                                                           |                        |                                    |
| Type of Cooling - Water and Forced-air<br>Maximum Outlet Temperature 70 C<br>Water Flow - 15 - 25 gallons per minute<br>Jacket Type - 7651927<br>Maximum Incoming Air Temperature 50 C<br>Flow - 15 Cubic feet per minute to bulb<br>3 Cubic feet per minute to stem |                        |                                    |
| Gasket - Cat. No. 5182028 Pl                                                                                                                                                                                                                                         |                        |                                    |
| Net Weight, approximate<br>Shipping Weight, approximate<br>Installation and Operation - ET-Hl                                                                                                                                                                        | 30<br>175              | Pounds<br>Pounds                   |
| MAXIMUM RATINGS AND TYPICAL OPERATING                                                                                                                                                                                                                                | CONDITIONS             |                                    |
| Ty<br>Ope                                                                                                                                                                                                                                                            | pical Ma<br>eration Ra | ximum<br>tings                     |
| CTUDE D Y-L LOWER WALTLIEV (IMO IORES)                                                                                                                                                                                                                               |                        |                                    |

| D-c Plate Voltage                         | 12000 | 15000 | Volts     |
|-------------------------------------------|-------|-------|-----------|
| Maximum Signal Plate Currentt, per tube   |       | 7.5   | Amperes   |
| D-c Maximum Signal Plate Inputt, per tube |       | 100-  | Kilowatts |

|                                                                                                                                                                                                                                                                                            | ту<br>Оре                                         | pical<br>ration                                 |                                                     | Maximum<br>Ratings                      |                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|
| Plate Dissipation <sup>†</sup> , per tube<br>D-c Grid Voltage<br>Peak A-f Grid Input Voltage<br>Zero Signal Plate Current<br>Maximum Signal Plate Current<br>Maximum Signal Driving Power, approximate<br>Effective Load, plate-to-plate<br>Maximum Signal Plate Power Output, approximate |                                                   |                                                 | -100<br>2200<br>2<br>13<br>6<br>2000<br>90          | 50                                      | Kilowatts<br>Volts<br>Volts<br>Amperes<br>Amperes<br>Kilowatts<br>Ohms<br>Kilowatts               |
| CLASS B R-F POWER AMPLIFIER<br>Carrier conditions per tube for use with a map                                                                                                                                                                                                              | c modulat                                         | ion fa                                          | ctor o                                              | f 1.0                                   |                                                                                                   |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage                                                                                                                                                              | 12000<br>-100<br>218<br>525                       | 15000<br>-175<br>3.5<br>650                     | 18000<br>-250<br>4.2<br>775                         | 20000<br>5<br>100<br>75                 | Volts<br>Volts<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts                                      |
| Driving Power‡, approximate<br>Plate Power Output, approximate                                                                                                                                                                                                                             | 0.5                                               | 0.75<br>17.5                                    | 1.1<br>25                                           |                                         | Kilowatts<br>Kilowatts                                                                            |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - A<br>Carrier conditions per tube for use with a max                                                                                                                                                                                           | PLATE MOI<br>x modulat                            | DULATED                                         | ctor o                                              | f 1.0                                   |                                                                                                   |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approximate<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage<br>Driving Power<br>Plate Power Output                                                                                      |                                                   |                                                 | 12000<br>-800<br>5<br>1<br>2000<br>2<br>45          | 12000<br>-3000<br>5<br>1.25<br>60<br>50 | Volts<br>Volts<br>Amperes<br>Amperes<br>Kilowatts<br>Kilowatts<br>Volts<br>Kilowatts<br>Kilowatts |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>Key-down conditions per tube without modulation                                                                                                                                                                                              | on§                                               |                                                 |                                                     |                                         |                                                                                                   |
| D-c Plate Voltage<br>D-c Grid Voltage<br>D-c Plate Current<br>D-c Grid Current, approximate<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approximate<br>Driving Power, approximate<br>Plate Power Output, approximate                                               | 12000<br>-800<br>6.25<br>0.8<br>2050<br>1.6<br>50 | 15000<br>-900<br>7.5<br>0.85<br>2300<br>2<br>75 | 18000<br>-1000<br>8.33<br>0.9<br>2550<br>2.4<br>100 | 20000<br>-3000<br>10<br>1<br>200<br>100 | Volts<br>Volts<br>Amperes<br>Ampere<br>Kilowatts<br>Kilowatts<br>Volts<br>Kilowatts<br>Kilowatts  |
| APPLICATION NOTES                                                                                                                                                                                                                                                                          |                                                   |                                                 |                                                     |                                         |                                                                                                   |
| Plate Series Protective Resistors (see para<br>Installation in the Instructions)                                                                                                                                                                                                           | graph de:                                         | scribir                                         | ng plat                                             | e circuit                               | t under                                                                                           |
| Series Resistor, ohms 10                                                                                                                                                                                                                                                                   | 20                                                | 40                                              | )                                                   | 50                                      |                                                                                                   |
| Maximum Power Output of<br>Rectifier, kilowatts 100                                                                                                                                                                                                                                        | 250                                               | 640                                             | )                                                   | 1600                                    |                                                                                                   |
| ↑ Averaged over any audio-frequency cycle                                                                                                                                                                                                                                                  |                                                   |                                                 |                                                     |                                         |                                                                                                   |

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.









Filament Characteristics Transmitting Tube GL-898-A K-6966422 2-18-42

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



K-5185285 3-6-43

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 10-44 (8M) Filing No. 8850 Supersedes GET-767C

#### www.SteamPoweredRadio.Com

USA

# **ELECTRONICS DEPARTMENT** GENERAL 🍘 ELECTRIC

# Transmitting Tube GL-1613 - - Description and Rating

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

#### ELECTRICAL

| Filament<br>Voltag<br>Currer | c - Indirectly heated<br>ge, a-c or d-c       |  | 6.3  | Volts     |
|------------------------------|-----------------------------------------------|--|------|-----------|
| ourror                       |                                               |  | 0.1  | imporos   |
| Grid-pla                     | ate Transconductance, I <sub>b</sub> = -31 ma |  | 2500 | Micromhos |
| Direct 1                     | Interelectrode Capacitances*                  |  |      |           |
| Grid-I                       | plate                                         |  | 0.26 | μµf       |
| Input                        |                                               |  | 6.5  | uuf       |
| Output                       | 5                                             |  | 13.5 | μµf       |

Frequency for Maximum Ratings

#### MECHANICAL

Base Description - Small Wafer Octal 7-pin

Maximum Over-all Dimensions Length Diameter

Net Weight, approximate Shipping Weight, approximate

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED

(Carrier Conditions Per Tube for Use With a Maximum Modulation Factor of 1.0)

|                                 | Typical<br>Operation | Maximum<br>Ratings |
|---------------------------------|----------------------|--------------------|
| D-c Plate Voltage               | 275                  | 275 Volts          |
| D-c Grid Voltage (Grid 1)‡      | -35                  | -100 Volts         |
|                                 | 12500                | Ohms               |
| D-c Grid Voltage (Grid 2)+      | 200                  | 275 Volts          |
|                                 | 7500                 | Ohms               |
| D-c Plate Current               | 42                   | 50 Milliamperes    |
| D-c Grid Current, approximately | 2.8                  | 5 Milliamperes     |
| D-c Screen Current              | 10                   | Milliamperes       |
| Plate Input                     |                      | 11.5 Watts         |
| Screen Input                    |                      | 2 Watts            |
| Plate Dissipation               |                      | 7 Watts            |
| Peak R-F Grid Input Voltage     | 65                   | Volts              |
|                                 |                      |                    |

| 0.)                 | VOILS             |
|---------------------|-------------------|
| 0.7                 | Amperes           |
| 2500                | Micromhos         |
| 0.26<br>6.5<br>13.5 | րիլ<br>հիլ<br>հիլ |

45 Megacycles

3 1/4 Inches 1 4/16 Inches

| CLASS C RADIO-FREQU                                       | JENCY POWER | AMPLIFIER | AND | OSCILLATOR | , PLATE N            | MODULATED (          | CONT'D)                 |
|-----------------------------------------------------------|-------------|-----------|-----|------------|----------------------|----------------------|-------------------------|
|                                                           |             |           |     |            | Typical<br>Operation | Maximum<br>n Ratings | 1                       |
| Driving Power<br>Plate Power Output<br>D-c Heater-Cathode | Potential   |           |     |            | 0.16<br>6            | 100                  | Watts<br>Watts<br>Volts |

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR (Key down conditions per tube without modulation)§

|                                     | Typical<br>Operation | Maximum<br>Ratings |              |
|-------------------------------------|----------------------|--------------------|--------------|
| D-c Plate Voltage                   | 350                  | 350                | Volts        |
| D-c Grid Voltage (Grid 1)∆          | -35                  | -100               |              |
|                                     | 10000                |                    | Ohms         |
| D-c Grid Voltage (Grid 2)¶          | 200                  | 275                | Volts        |
|                                     | 15000                |                    | Ohms         |
| D-c Plate Current                   | 50                   | 50                 | Milliamperes |
| D-c Grid Current, approximate       | 3.5                  | 5                  | Milliamperes |
| D-c Screen Current                  | 10                   |                    | Milliamperes |
| Plate Input                         |                      | 17.5               | Watts        |
| Screen Input                        |                      | 2.5                | Watts        |
| Plate Dissipation                   |                      | 10                 | Watts        |
| Peak R-F Grid Input Voltage, approx | 70                   |                    | Volts        |
| Driving Power, approximately        | 0.22                 |                    | Watts        |
| Plate Power Output, approximately   | 9                    |                    | Watts        |
| D-c Heater-Cathode Potential        |                      | 100                | Volts        |

\* With shell connected to cathode.

# Obtained by grid leak or by partial self-bias methods.

- + From modulated fixed supply or modulated plate-voltage supply through resistor of value shown.
- § Modulation essentially negative, may be used if the positive peak of the Audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
- $\Delta$  From separate source, or from the plate-voltage supply with a voltage divider, or through a series resistor of the value shown.
- ¶ Obtained by grid resistor or other self- or fixed-bias method.

The 1613 can be operated at frequencies as high as 45 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 90 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

#### 45 60 90 Megacycles PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE AND PLATE INPUT Class C Plate Modulated 100 90 85 per cent Class C Unmodulated 100 90 85 per cent Tube Mounting Position Bottom View of Socket Connections Vertical or Horizontal GI Small Wafer Octal 7-pin Base OR M 2 Ĝ3

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

www.SteamPoweredRadio.Com

FREQUENCY

# GENERAL 🍘 ELECTRIC

# Transmitting Tube GL-1614 - - Description and Rating

The GL-1614 is a beam power transmitting tube of the metal type capable of delivering an output of 21 watts in Class C radio-frequency telegraph service with only 0.1 watt of driving power.

TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

#### ELECTRICAL

| Number of Electrodes                      | 4    |           |
|-------------------------------------------|------|-----------|
| Heater Voltage*                           | 6.3  | Volts     |
| Heater Current                            | 0.9  | Ampere    |
| Grid-plate Transconductance, Ib = 72 ma   | 6050 | Micromhos |
| Direct Interelectrode Capacitances+, mmfd |      |           |
| Grid-plate                                | 0.4  |           |
| Input                                     | 10   |           |
| Output                                    | 12   |           |
|                                           |      |           |

MECHANICAL

Base Description Net Weight (approx) Shipping Weight (approx) Small Wafer Octal, 7-pin 3 Ounces 1 Pound

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| Operat10                                                    | n                                                                                                                                                                                       | 1                                                                                                                                                                                                        | Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DULATED<br>ation fa<br>o Anode                              | ctor                                                                                                                                                                                    | of 1.0                                                                                                                                                                                                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 325<br>-85<br>21000<br>65<br>4<br>102<br>0.4<br>11.5        | 6.3                                                                                                                                                                                     | 325<br>-125<br>70<br>10<br>23<br>14                                                                                                                                                                      | Volts<br>Volts<br>Volts<br>Ohms<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Watts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DULATED<br>.ation fa                                        | ctor                                                                                                                                                                                    | of 1.0                                                                                                                                                                                                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 325<br>-40<br>20000<br>245<br>10000<br>70<br>2<br>51<br>0.1 | 6.3                                                                                                                                                                                     | 325<br>-125<br>300<br>70<br>5<br>23<br>2.5<br>14                                                                                                                                                         | Volts<br>Volts<br>Volts<br>Ohms<br>Volts<br>Volts<br>Ohms<br>Milliamperes<br>Milliamperes<br>Watts<br>Watts<br>Volts<br>Volts<br>Volts<br>Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | DULATED<br>ation fa<br>o Anode<br>325<br>-85<br>21000<br>65<br>4<br>102<br>0.4<br>11.5<br>DULATED<br>ation fa<br>325<br>-40<br>20000<br>245<br>10000<br>70<br>2<br>2<br>51<br>0.1<br>15 | DULATED<br>ation factor<br>o Anode<br>6.3<br>325<br>-85<br>21000<br>65<br>4<br>102<br>0.4<br>11.5<br>DULATED<br>ation factor<br>6.3<br>325<br>-40<br>20000<br>245<br>10000<br>70<br>2<br>51<br>0.1<br>15 | DULATED<br>ation factor of 1.0<br>o Anode<br>6.3<br>325<br>-125<br>-85<br>21000<br>65<br>100<br>65<br>100<br>23<br>14<br>102<br>0.4<br>11.5<br>DULATED<br>ation factor of 1.0<br>6.3<br>325<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>-125<br>- |

|                                                    | <b>Typica</b> l<br>Operation |      | Maximum∆<br>Ratings |
|----------------------------------------------------|------------------------------|------|---------------------|
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR         |                              |      |                     |
| (Key down conditions per tube without modulation)§ |                              |      |                     |
| Filament Voltage                                   | 6.3                          |      | Volts               |
| D-c Plate Voltage                                  | 375                          | 375  | Volts               |
| D-c Grid Voltage                                   |                              | -125 | Volts               |
| From a fixed supply of                             | -40                          |      | Volts               |
| From a cathode resistor of                         | 435                          |      | Ohms                |
| From a grid resistor of                            | 20000                        |      | Ohms                |
| D-c Screen Voltage                                 |                              | 300  | Volts               |
| From a fixed supply of                             | 250                          |      | Volts               |
| From a series resistor of                          | 12500                        |      | Ohms                |
| D-c Plate Current                                  | 80                           | 110  | Milliamperes        |
| D-c Grid Current (approx)                          | 2                            | 5    | Milliamperes        |
| Plate Input                                        |                              | 35   | Watts               |
| Plate Dissipation                                  |                              | 21   | Watts               |
| Screen Input                                       |                              | 3.5  | Watts               |
| Peak R-f Grid Input Voltage (approx)               | 51                           |      | Volts               |
| Driving Power (approx)                             | 0.1                          |      | Watt                |
| Plate Power Output                                 | 21                           |      | Watts               |

\* In circuits where the cathode is not directly connected to the heater, the potential difference between heater and cathode should be kept as low as possible.

- + With shell connected to cathode.
- **‡** Screen voltage preferably obtained from fixed supply, modulated simultaneously with plate voltage. Series voltage-dropping resistor connected to modulated plate-voltage supply may also be used.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

 $\Delta$  The GL-1614 can be operated at frequencies as high as 80 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 120 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency, megacycles 80 120 Max Permissible Percentage of Max Rated Plate Voltage and Plate Input Class C, plate modulated, triode ) plate modulated, tetrode) 100 75 Class C, telegraphy "MAX TUBE SYMBOL & BOTTOM VIEW AVERAGE PLATE CHARACTERISTICS SOCKET CONNECTIONS 3 36" MAX. AILLIAMPE. 4 3/16 MAX. METAL SHELL 4 5/16 4 - SCREEN 5 - GRID S MAX - NEATER - CATHODE SMALL WAFER

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 1-42 (3M) Filing No. 8850 PRINTED IN USA

TUBE MOUNTING POSITION VERTICAL OR HORIZONTAL

www.SteamPoweredRadio.Com

-



3 oz

3 1b

GEH-1213



### **Transmitting Tube GL-1616 - - Description and Rating**

Description

The GL-1616 is a high-vacuum, half-wave rectifier. Since the tube is quick-heating, it is particularly useful in high-voltage devices where plate and filament voltages are applied simultaneously under full load conditions.

#### **Technical Information**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

Electrical

Filament-Filamentary2.5 VoltsVoltage2.5 VoltsCurrent5.0 AmperesTube Voltage Drop (See Curve)75 VoltsMechanical75 Volts

Type of cooling, Convection (Maximum Ambient 60 C)

Base Description Medium, 4-pin Bayonet, No. 4102

Maximum Over-all Dimensions (See Outline)6-13/16" MaxLength6-13/16" MaxDiameter2-1/16" Max

Vertical, Base down

Net Weight, approximate

Shipping Weight, approximate

Installation and Operation publication number

#### MAXIMUM RATINGS

Rectifier Operation

Mounting Position

| Peak Inverse Voltage   | 5500  | Volts   |
|------------------------|-------|---------|
| Peak Plate Current     | 0.8   | Amperes |
| Average Plate Current  | 0.13  | Amperes |
| Surge Current, Maximum | * 2.5 | Amperes |

\* Equipment should be designed so that this value is not exceeded during switching operations.





Outline Rectifier Tube GL-1616 K-6979172 July 17-1941 Average Plate Characteristic K-6966495 July 12-1941

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 9-43 (6M) Filing No. 8850 www.SteamPoweredRadio.Com

# GENERAL CELECTRIC

#### **Transmitting Tube GL-1619 - - Description and Rating**

The GL-1619 is a beam power transmitting tube of the metal type utilizing a coated filament to provide fast heating. The high power sensitivity and the quick-heating feature of this tube make it especially suited for use as an a-f or r-f amplifier, modulator, frequency multiplier, or oscillator in equipment where quick off-on operation is essential.

Operation of the 1619 with maximum ratings is practical at frequencies as high as 45 megacycles. Neutralization of the tube is generally unnecessary in adequately shielded circuits. In push-pull class AB<sub>2</sub> amplifier service, the 1619 will deliver over 35 watts of audio power with low distortion. Its maximum plate dissipation is 15 watts.

#### TENTATIVE CHARACTERISTICS AND RATINGS

| Filament Voltage (a-c or d-c)                | 2.5         | Volts          |
|----------------------------------------------|-------------|----------------|
| Filament Current                             | 2           | Amperes        |
| Transconductance, For plate current of 50 ma | 4500 approx | Micromhos      |
| Direct Interelectrode Capacitances:          |             |                |
| Grid-plate                                   | 0.35        | µµſ            |
| Input                                        | 10.5        | μμf            |
| Output                                       | 12.5        | ннt            |
| Base                                         | Small Wafe  | er Octal 7-pin |
|                                              |             |                |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AS SINGLE-TUBE CLASS A1 + AMPLIFIER

| D-c Plate Voltage                            | 400    | max | Volts        |
|----------------------------------------------|--------|-----|--------------|
| D-c Screen Voltage (Grid No.2)               | 300    | max | Volts        |
| Screen Input                                 | 3.5    | max | Watts        |
| Plate Dissipation                            | 15     | max | Watts        |
| Typical Operation with Fixed Bias:           |        |     |              |
| D-c Plate Voltage                            | 300    |     | Volts        |
| D-c Screen Voltage                           | 250    |     | Volts        |
| D-c Grid Voltage (Grid No.1) tt o            | -10    |     | Volts        |
| Peak A-f Grid Voltage                        | 10     |     | Volts        |
| Beam-forming Plate Voltage **                | 0      |     | Volts        |
| Zero-signal D-c Plate Current                | 44     |     | Milliamperes |
| Max-signal D-c Plate Current                 | 46     |     | Milliamperes |
| Zero-signal D-c Screen Current               | 4      |     | Milliamperes |
| Max-signal D-c Screen Current                | 6      |     | Milliamperes |
| Load Resistance                              | 8800   |     | Ohms         |
| Total Harmonic Distortion                    | 7      |     | Per Cent     |
| Max-signal Power Output (approx)             | 3      |     | Watts        |
| AS PUSH-PULL CLASS AB1 + AMPLIFIER           |        |     |              |
| D-c Plate Voltage                            | 400    | max | Volts        |
| D-c Screen Voltage (Grid No.2)               | 300    | max | Volts        |
| Screen Input *                               | 3.5    | max | Watts        |
| Plate Dissipation*                           | 15     | max | Watts        |
| Typical Operation with Fixed Bias:           |        |     |              |
| Unless otherwise specified, values are for 2 | tubes. |     |              |
| D-c Plate Voltage                            | 400    |     | Volts        |
| D-c Screen Voltage                           | 300    |     | Volts        |
| D-c Grid Voltage (Grid No.1) + 0             | -20    |     | Volts        |
| Peak A-f Grid-to-Grid Voltage                | 40     |     | Volts        |
| Beam-forming Plate Voltage **                | 0      |     | Volts        |
| Zero-signal D-c Plate Current                | 52     |     | Milliamperes |

△ Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier condition.

The maximum ratings apply only at frequencies below 45 megacycles. For operation at higher frequencies adequate ventilation and normal ambient temperatures must be maintained, and the plate voltage must be reduced as indicated.

Frequency, Megacycles

90

75

Percentage of Maximum) Rated Plate Voltage ) and Plate Input )

100

The resonant frequency of the grid-plate circuit is approximately 200 megacycles.

45







Bottom View of Socket Connections







GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

11-39 (2500) Filing No. 8850 www.SteamPoweredRadio.Com


#### **Transmitting Tube GL-1623 - - Description and Rating**

The GL-1623 is a three-electrode transmitting tube for use as an oscillator, radio-frequency amplifier, and Class B modulator. This tube is particularly useful as a self-excited oscillator in circuits which are subject to unusual conditions of wide plate-load variations because it is not critical to changes in grid excitation voltage.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the Specifications.

#### GENERAL CHARACTERISTICS

ELECTRICAL

| Filament Voltage, volts                 | 6.3 |
|-----------------------------------------|-----|
| Filament Current, amperes               | 2.5 |
| Amplification Factor                    | 20  |
| Direct Interelectrode Capacitances, µµf |     |
| Grid-plate                              | 6.7 |
| Grid-cathode                            | 5.7 |
| Plate-cathode                           | 0.9 |
|                                         |     |

#### MECHANICAL

| Base or Terminal Description | Medium 4-pin Ceramic, Bayonet |  |
|------------------------------|-------------------------------|--|
| Net Weight. oz approv        | - 3                           |  |
| Shipping Weight, 1b approx   | 7                             |  |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| CLASS B A-F POWER AMPLIFIER (TWO TUBES)       | 2    | <b>Fypical</b> | M   | aximum*   |
|-----------------------------------------------|------|----------------|-----|-----------|
|                                               | 0    | peration       | R   | atings    |
| Filament Voltage, volts                       |      | 6              | .3  |           |
|                                               | CCS  | IC and AS      | CCS | IC and AS |
| D-c Plate Voltage, volts                      | 750  | 1000           | 750 | 1000      |
| Max Signal Plate Current (per tube)+,ma       |      |                | 100 | 100       |
| D-c Max Signal Plate Input (per tube)+, watts |      |                | 75  | 100       |
| Plate Dissipation (per tube), watts           |      |                | 25  | 30        |
| D-c Grid Voltage, volts                       | -25  | -40            |     |           |
| Peak A-f Grid Input Voltage, volts            | 200  | 230            |     |           |
| Zero Signal Plate Current, ma                 | 35   | 30             |     |           |
| Maximum Signal Plate Current, ma              | 200  | 200            |     |           |
| Max Signal Driving Power, approx watts        | 4    | 4.2            |     |           |
| Effective Load (plate-to-plate), ohms         | 8400 | 12000          |     |           |
| Max Signal Plate Power Output, watts          | 100  | 145            |     |           |

CLASS B R-F POWER AMPLIFIER Carrier conditions per tube for use with a max modulation factor of 1.0

| Filament Voltage, volts            |      |           |      |           |
|------------------------------------|------|-----------|------|-----------|
|                                    | CCS  | IC and AS | CCS  | IC AND AS |
| D-c Plate Voltage, volts           | 750  | 1000      | 750  | 1000      |
| D-c Grid Voltage, volts            | -40  | -50       |      |           |
| D-c Plate Current, ma              | 50   | 45        | 50   | 50        |
| Plate Input, watts                 |      |           | 37.5 | 45        |
| Plate Dissipation, watts           |      |           | 25   | 30        |
| Peak R-f Grid Input Voltage, volts | 60   | 62        |      |           |
| Driving Power +, approx watts      | 1.4  | 1.7       |      |           |
| Plate Power Output, watts          | 12.5 | 16        |      |           |

#### www.SteamPoweredRadio.Com

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0

|                                           |           | Typical   | M    | aximum*   |
|-------------------------------------------|-----------|-----------|------|-----------|
|                                           | Operation |           | R    | atings    |
| Filament Voltage, volts                   |           | 6         | 5.3  |           |
| 0,                                        | CCS       | IC and AS | CCS  | IC and AS |
| D-c Plate Voltage, volts                  | 600       | 750       | 600  | 750       |
| D-c Grid Voltage, volts                   | -125      | -125      | -200 | -200      |
| D-c Plate Current, ma                     | 83        | 100       | 83   | 100       |
| D-c Grid Current, approx ma               | 25        | 20        | 25   | 25        |
| Plate Input, watts                        |           |           | 50   | 75        |
| Plate Dissipation, watts                  |           |           | 17.5 | 25        |
| Peak R-f Grid Input Voltage, approx volts | 200       | 215       |      |           |
| Driving Power, approx watts               | 5         | 4         |      |           |
| Plate Power Output, watts                 | 38        | 55        |      |           |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key down conditions per tube without modulation §

Filament Voltage, volts

|                                           |     |           | -    |           |
|-------------------------------------------|-----|-----------|------|-----------|
|                                           | CCS | IC and AS | CCS  | IC and AS |
| D-c Plate Voltage, volts                  | 750 | 1000      | 750  | 1000      |
| D-c Grid Voltage. volts                   | -85 | -90       | -200 | -200      |
| D-c Plate Current. ma                     | 100 | 100       | 100  | 1.00      |
| D-c Grid Current, approx ma               | 17  | 20        | 25   | 25        |
| Plate Input. watts                        |     |           | 75   | 100       |
| Plate Dissipation. watts                  |     |           | 25   | 30        |
| Peak R-f Grid Input Voltage, approx volts | 200 | 215       |      |           |
| Driving Power, approx watts               | 2.5 | 3.1       |      |           |
| Plate Power Output, watts                 | 55  | 75        |      |           |
|                                           |     |           |      |           |

6.3

+ Averaged over any audio-frequency cycle.

+ At crest of audio-frequency cycle.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION NOTES

\* The GL-1623 can be operated at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency, megacycles                                                            | 60  | 70 | 100 |
|----------------------------------------------------------------------------------|-----|----|-----|
| Maximum Permissible Percentage of Maximum<br>Rated Plate Voltage and Plate Input |     |    |     |
| Class B, R-f                                                                     | 100 | 93 | 88  |
| Class C, plate modulated)<br>unmodulated )                                       | 100 | 80 | 60  |



If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

# GENERAL B ELECTRIC SCHENECTADY, N.Y.

4-40 (3M) Filing No. 8850

#### **Transmitting Tube GL-1641 - Description and Rating**

The 1641 is a high-vacuum, full-wave rectifier for use in high-voltage d-c power supply devices operating from the alternating-current supply line.

#### CHARACTERISTICS AND RATINGS

| Filament Voltage                                   | 5   | Volts       |
|----------------------------------------------------|-----|-------------|
| Filament Current                                   | 3   | Amperes     |
| Average Tube Voltage Drop, output current = 250 ma | 61  | Volts       |
| Base Description                                   | Med | ium 4-prong |
| Net Weight, approx                                 | 7   | Ounces      |
| Shipping Weight                                    | 3   | Pounds      |

#### MAXIMUM RATINGS

#### Condenser or Choke Input Filter

A-c Voltage per Plate, rms Peak Inverse Voltage Output Current, d-c





Outline Transmitting Tube GL-1641 K-8074609 2-3-42 Average Plate Characteristic K-8074610 2-3-42 EACH PLATE  $E_f = 5.0V.A-C$ 

GENERAL ELECTRIC COMPANY, SCHENECTADY,N.Y. 2-42 (3M) Filing No. 8850

## **ELECTRONICS DEPARTMENT** GENERAL 🍘 ELECTRIC Transmitting Tube GL-8002--Description and Rating

# The GL-8002 is a three-electrode transmitting tube designed for use as a radio-

frequency power amplifier at high frequencies. Multiple leads for both the filament and grid connectors minimize the inductance to these electrodes. Maximum ratings may be used up to a frequency of 150 megacycles and reduced ratings up to 300 megacycles.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

#### General Design

Number of Electrodes 3 Filament Voltage 16 Volts Filament Current 38 Amperes Direct Interelectrode Capacitances, approximate Plate to Grid 8.7 uuf Grid to Filament 10.2 uuf Plate to Filament 0.90 uuf Type of Cooling - Water and Forced Air Installation and Operation GEH-1152

#### Maximum Ratings

CLASS B RADIO-FREQUENCY POWER AMPLIFIER

Carrier conditions per tube for use with maximum modulation factor of 1.0

Plate Voltage, d-c 3500 Volts Plate Current, d-c Plate Input 1800 Watts Plate Dissipation 1200 Watts

#### CLASS C . R-F POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Plate Voltage, d-c Grid Voltage, d-c Plate Current, d-c Grid Current, d-c Plate Input Plate Dissipation

#### CLASS C R-F POWER AMPLIFIER AND OSCILLATOR, TELEGRAPHY

Key down conditions per tube without modulation. Essentially negative modulation may be used if the positive peak of the a-f envelope does not exceed 115 per cent of the carrier conditions.

| Plate Voltage, d-c |  |  |  | 3500 | Volts   |
|--------------------|--|--|--|------|---------|
| Grid Voltage, d-c  |  |  |  | -500 | Volts   |
| Plate Current, d-c |  |  |  | 1.0  | Amperes |
| Grid Current, d-c  |  |  |  | 0.1  | Amperes |
| Plate Input        |  |  |  | 3000 | Watts   |
| Plate Dissipation  |  |  |  | 1200 | Watts   |

0.6 Amperes

2500 Volts

-500 Volts

1250 Watts

750 Watts

0.5 Amperes

0.1 Amperes





GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

#### www.SteamPoweredRadio.Com

# GENERAL C ELECTRIC

#### Transmitting Tube GL-8002-R -- Description and Rating

The GL-8002-R is a three-electrode transmitting tube designed for use as a radio-frequency power amplifier at high frequencies. Multiple leads for both the filament and grid connectors minimize the inductance to these electrodes. The anode is fitted with a special hub and cooling is obtained by forced air. Maximum ratings may be used up to a frequency of 120 megacycles and reduced ratings up to 200 mega-cycles.

#### TECHNICAL INFORMATION

These data are for reference only. For design information see the specifications.

General Design

| Number of Electrodes<br>Filament Voltage<br>Filament Current<br>Direct Interelectrode Capacitances, approximate<br>Plate to Grid |                                | 3<br>16 Volts<br>38 Amperes |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|
| Grid to Filament                                                                                                                 |                                | 10.2 uuf                    |
| Plate to Filament                                                                                                                |                                | 1.0 uuf                     |
| Type of Cooling - Forced Air                                                                                                     | GF.                            | H_1108                      |
| Installation and operation                                                                                                       |                                | 11-1190                     |
| Maximum Ratings                                                                                                                  |                                |                             |
| CLASS B RADIO-FREQUENCY POWER AMPLIFIER<br>Carrier conditions per tube for use with maximum                                      | n modulation factor of l       | .0                          |
| Plate Voltage, d-c                                                                                                               |                                | 3500 Volts                  |
| Plate Current, d-c                                                                                                               |                                | 0.6 Amperes                 |
| Plate Input<br>Plate Dissipation                                                                                                 |                                | 1800 Watts<br>1200 Watts    |
|                                                                                                                                  |                                | 1200 40005                  |
| Carrier conditions per tube for use with a maxim                                                                                 | num modulation factor of       | 1.0                         |
| Plate Voltage, d-c                                                                                                               |                                | 2500 Volts                  |
| Grid Voltage, d-c                                                                                                                |                                | -500 Volts                  |
| Plate Current, d-c                                                                                                               |                                | 0.5 Amperes                 |
| Grid Current, d-c                                                                                                                |                                | 0.1 Amperes                 |
| Plate Dissipation                                                                                                                |                                | 750 Watts                   |
|                                                                                                                                  |                                | 100 42003                   |
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR, TEL                                                                                  | EGRAPHY . Essentially negative | modulation may              |
| be used if the positive peak of the a-f envelope<br>carrier conditions.                                                          | does not exceed 115 p          | er cent of the              |
| Plate Voltage, d-c                                                                                                               |                                | 3500 Volts                  |
| Grid Voltage, d-c                                                                                                                |                                | -500 Volts                  |
| Plate Current, d-c                                                                                                               |                                | 1.0 Amperes                 |
| Grid Current, d-c                                                                                                                |                                | 0.1 Amperes                 |
| Plate Input                                                                                                                      |                                | 3000 Watts                  |

Plate Dissipation 1200 Watts The air flow should be 100 cubic feet per minute and the temperature of the incoming air should not exceed 45 C. The glass temperature must not be allowed to exceed 150 C. Ordinarily, deflecting vanes diverting the outgoing air toward the ter-

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

minal seals provide sufficient cooling.

•



Outline Transmitting Tube GL-8002-R K-6912385 Mar. 16, 1944

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

# GENERAL BELECTRIC

#### Transmitting Tube GL-8009--Description and Rating

The GL-8009 is a three-electrode power tube designed for use as a radio-frequency amplifier, oscillator, or Class B modulator. The plate is water-cooled and is capable of dissipating 12 to 20 kw, depending upon the class of service. The design of the terminal mount connections and the introverted anode minimize lead inductance. This tube is particularly suitable for high-frequency applications.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL DESIGN

Electrical

| Filament Voltage                            | 12.6 Volts           |
|---------------------------------------------|----------------------|
| Filament Current                            | 320 Amperes          |
| Amplification Factor                        | 20                   |
| Grid-plate Transconductance, $I_{b} = 2.0$  | 21000 Micromhos      |
| Direct Interelectrode Capacitances, mu mu f |                      |
| Grid-plate                                  | 26                   |
| Grid-filament                               | 29                   |
| Plate-filament                              | 2.6                  |
| Installation and Operation                  | GEH-1152             |
| Mechanical                                  |                      |
| Type of Cooling                             | Water and Forced Air |
| Water Flow                                  | 12-20 Gallons per    |
|                                             | Minute               |
| Air Flow to Bulb, from a 3-in. Diam Nozzle  | 20 Cubic Feet        |
|                                             | per Minute           |
| Net Weight                                  | 7 Pounds             |
| Shipping Weight, approx                     | 21 Pounds            |
|                                             |                      |

#### MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B A-F POWER AMPLIFIER (TWO TUBES)

|                                       | Typi<br>Opera | cal<br>tion | Meximum*<br>Ratings |                  |
|---------------------------------------|---------------|-------------|---------------------|------------------|
| D-c Plate Voltage                     | 7500          | 10000       | 10500               | Volts<br>Amperes |
| D-c Max Signal Plate Input, per tubet |               |             | 40                  | Kilowatts        |
| Plate Dissipation, per tubet          |               |             | 15                  | Kilowatts        |
| D-c Grid Voltage                      | -300          | -430        |                     | Volts            |
| Peak A-f Grid Input Voltage           | 1450          | 1690        |                     | Volts            |
| Zero Signal Plate Current             | 1.0           | 1.0         |                     | Ampere           |
| Max Signal Plate Current              | 7.0           | 7.0         |                     | Amperes          |
| Max Signal Plate Inputt               | 52            | 70          |                     | Kilowatts        |
| Max Signal Driving Power, approx      | 250           | 225         |                     | Watts            |
| Effective Load, plate-to-plate        | 2200          | 3200        |                     | Ohms             |
| Max Signal Plate Power Output         | 30            | 45          |                     | Kilowatts        |
|                                       |               |             |                     |                  |

#### CLASS B R-F POWER AMPLIFIER

Carrier conditions per tube for use with a max modulation factor of 1.0.

|                             | Typ<br>Oper | ical<br>ation | Maximum*<br>Ratings |           |  |
|-----------------------------|-------------|---------------|---------------------|-----------|--|
| D-c Plate Voltage           | 7500        | 10000         | 10500               | Volts     |  |
| D-c Grid Voltage            | -310        | -430          |                     | Volts     |  |
| D-c Plate Current           | 3.5         | 3             | 4                   | Amperes   |  |
| Plate Input                 |             |               | 32                  | Kilowatts |  |
| Plate Dissipation           |             |               | 20                  | Kilowatts |  |
| Peak R-f Grid Input Voltage | 450         | 550           |                     | Volts     |  |
| Driving Power‡, approx      | 500         | 500           |                     | Watts     |  |
| Plate Power Output          | 8           | 10            |                     | Kilowatts |  |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR - PLATE-MODULATED Carrier conditions per tube for use with a max modulation factor of 1.0.

| D-c Plate Voltage                   | 7500  | 10000 | 10500 | Volts     |
|-------------------------------------|-------|-------|-------|-----------|
| D-c Grid Voltage                    | -1000 | -1200 | -1200 | Volts     |
| D-c Plate Current                   | 3.0   | 3.6   | 3.6   | Amperes   |
| D-c Grid Current, approx            | 0.3   | 0.3   | 0.6   | Ampere    |
| Plate Input                         |       |       | 36    | Kilowatts |
| Plate Dissipation                   |       |       | 12    | Kilowatts |
| Peak R-f Grid Input Voltage, approx | 1550  | 1770  |       | Volts     |
| Driving Power, approx               | 460   | 880   |       | Watts     |
| Plate Power Output                  | 16    | . 28  |       | Kilowatts |

CLASS C R-F POWER AMPLIFIER AND OSCILLATOR Key-down conditions per tube without modulation§

| D-c Plate Voltage                   | 7500 | 10000 | 10000<br>-800 | 10500 | Volts<br>Volts |
|-------------------------------------|------|-------|---------------|-------|----------------|
| D-c Plate Current                   | 5    | 4.5   | 6             | 6     | Amperes        |
| D-c Grid Current, approx            | 0.45 | 0.4   | 0.5           | 0.6   | Ampere         |
| Plate Dissipation                   |      |       |               | 20    | Kilowatts      |
| Peak R-f Grid Input Voltage, approx | 1250 | 1400  | 1500          |       | Vo]ts          |
| Driving Power, approx               | 560  | 550   | 750           |       | Wests          |
| LTare Lower, Ourbur                 | 21   | 74    | 4)            |       | NTTOWACUS      |

t Averaged over any audio-frequency cycle.

# At crest of audio-frequency cycle.

§ Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.

#### APPLICATION

\* The GL-8009 can be operated at maximum ratings in all classes of service at frequencies as high as 25 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown above.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

| Frequency - Mc                                                        | 25         | 50       | 75       | 100      |
|-----------------------------------------------------------------------|------------|----------|----------|----------|
| Class B R-f<br>Per Cent Max Plate Voltage<br>Per Cent Max Plate Input | 100<br>100 | 80<br>94 | 68<br>85 | 60<br>75 |

| Class C Plate-modulated<br>Per Cent Max Plate Voltage and Plate Input | 100                                   | 72          | 56    | 45        |
|-----------------------------------------------------------------------|---------------------------------------|-------------|-------|-----------|
| Class C<br>Per Cent Max Plate Voltage and Plate Input                 | 100                                   | 75          | 62    | 50        |
| Plate Series Protective Resistors (see paragraph stallation in        | describing plate<br>the Instructions) | circuit     | under | In-       |
| Series Resistor, ohms<br>Max Power Output of Rectifier, kilowatts     | 10<br>40                              | 15<br>100 2 | 20    | 30<br>640 |



GENERAL ELECTRIC COMPANY SCHENECTADY, N.Y.

# GENERAL 🛞 ELECTRIC

#### **Transmitting Tube GL-8010A-R - - Description and Rating**

PRELIMINARY TECHNICAL INFORMATION

The GL-8010A-R is a three-electrode transmitting tube with an oxidecoated, indirectly heated cathode. The anode is fitted with a cooler for forced-air cooling. The close spacing of the parallel plane electrodes minimizes transit time, yet the interelectrode capacitances are sufficiently low to prevent excessive feedback within the tube. These features, together with the low lead inductance provided by the disk type terminals, result in a tube especially suitable for use as an ultra-high-frequency oscillator or power amplifier.

#### GENERAL DESIGN

| ELECTRICAL                                         |             |         |
|----------------------------------------------------|-------------|---------|
| Cathode - Indirectly heated                        |             |         |
| Heater Voltage                                     | 5.2 - 6.3   | Voltst  |
| Heater Current                                     | 1.75 - 2.25 | Amperes |
| Heating Time                                       | 1           | Minute  |
| Amplification Factor                               | 30          |         |
| Transconductance at 0.040 Ampere                   | 2000        | umhos   |
| Direct Interelectrode Capacitances                 |             |         |
| Grid-plate                                         | 1.8         | µµſ     |
| Grid-cathode                                       | 2.3         | μμf     |
| Plate-cathode                                      | 0.2         | μμſ     |
| MECHANICAL                                         |             |         |
| Over-all Dimensions                                |             |         |
| Maximum Length                                     | 4 3/4       | Inches  |
| Maximum Diameter                                   | 1 1/2       | Inches  |
| Cooling                                            |             |         |
| A small blower is required for forced-air cooling. |             |         |
| Air flow must be sufficient to limit the glass     |             |         |
| temperature to 100 C at the hottest point.         |             |         |
| Mounting                                           |             |         |
| Plug and flexible leads to heater pins. Spring     |             |         |
| fingers on disks.                                  |             |         |
|                                                    |             |         |
| MAXIMUM RATINGS                                    |             |         |

# Class C R-f Power Amplifier or Oscillator1100 VoltsMaximum D-c Plate Voltage1100 MaMaximum D-c Plate Current100 MaMaximum D-c Plate Dissipation50 WattsMaximum D-c Grid Voltage-500 VoltsMaximum D-c Grid Current20 MaMaximum Frequency for Full Ratings350 Mc

<sup>†</sup>The heater should be operated as near the lower voltage as is consistent with satisfactory tube operation.

\*This supersedes Tube Type GL-8010-R



Outline Transmitting Tube GL-8010A-RK-80750516-12-42

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-43 (2M) Filing No. 8850

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com Supersedes GET-980A

#### ELECTRONICS DEPARTMENT

## GENERAL 🍘 ELECTRIC

#### Transmitting Tube GL-8012--Description and Rating

The GL-8012 is a high-perveance transmitting tube designed especially for use as an oscillator, r-f power amplifier, and frequency multiplier at the ultrahigh frequencies.

The tube has high plate efficiency at the higher frequencies because the tantalum plate and grid are closely spaced, thereby decreasing electron transit time between filament and plate. Lead inductance and resistance are minimized and neutralization is facilitated by the short, heavy, double grid and plate leads.

#### **TECHNICAL INFORMATION**

These data are for reference only. For design information see the specifications.

GENERAL CHARACTERISTICS

#### Electrical

| Number of Electrodes<br>Filament Voltage§ |                          | 36.3 | volts   |
|-------------------------------------------|--------------------------|------|---------|
| Filament Current                          |                          | 1.92 | amperes |
| Amplification Factor                      | 2. • · · · · · · · · · · | 18   |         |
| Direct Interelectrode Capacitances        |                          |      |         |
| Grid-plate                                |                          | 2.8  | uuf     |
| Grid-cathode                              |                          | 2.7  | uuf     |
| Plate-cathode                             |                          | 0.35 | uuf     |
|                                           |                          |      |         |

Mechanical

| Type of cooling            | Forced Air |        |
|----------------------------|------------|--------|
| Net Weight, approx         | 3          | ounces |
| Shipping Weight, approx    | 1          | pound  |
| Installation and Operation | GEH-1258   |        |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| Typical   | Maximumt |
|-----------|----------|
| Operation | Ratings  |

Class C R-F POWER AMPLIFIER - GRID-MODULATED (Carrier conditions per tube for use with a max modulation fector of 1.0)

| Filament Voltage                 |      | 6.3  | volts        |
|----------------------------------|------|------|--------------|
| D-c Plate Voltage                | 1000 | 1000 | volts        |
| D-c Grid Voltage**               | -135 | -200 | volts .      |
| D-c Plate Current                | 50   | 65   | milliamperes |
| D-c Grid Current*, approx        | 4    |      | milliamperes |
| Plate Input                      |      | 50   | watts        |
| Plate Dissipation                |      | 40   | watts        |
| Peak A-f Grid Voltage            | 65   |      | volts        |
| Peak R-f Grid Input Voltage      | 155  |      | volts        |
| Driving Power* <i>π</i> , approx | 3.5  |      | watts        |
| Plate Power Output               | 20   |      | watts        |

|                                                                                                                                                                                                                                                                   | Typical<br>Operation                                         | Maximum<br>Ratings                       | t                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| CLASS C R-F POWER AMPLIFIER AND OSCILLATOR<br>(Carrier conditions per tube for use with a                                                                                                                                                                         | - PLATE MODULATED<br>max modulation fact                     | or of 1.                                 | 0)                                                                                                           |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>From a grid resistor of<br>D-c Plate Current<br>D-c Grid Current*, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f'Grid Input Voltage, approx<br>Driving Power*, approx<br>Plate Power Output | 6.<br>800<br>-105<br>10000<br>40<br>10.5<br>145<br>1.4<br>22 | 3<br>800<br>-200<br>65<br>20<br>33<br>27 | volts<br>volts<br>ohms<br>milliamperes<br>milliamperes<br>watts<br>watts<br>volts<br>watts<br>watts<br>watts |
| CLASS C R-F FOWER AMPLIFIER AND OSCILLATOR<br>(Key down conditions per tube without moduls                                                                                                                                                                        | ution)‡                                                      |                                          |                                                                                                              |
| Filament Voltage<br>D-c Plate Voltage<br>D-c Grid Voltage<br>From a fixed supply of<br>From a grid resistor of<br>From a cathode resistor of<br>D-c Plate Current                                                                                                 | 6.<br>1000<br>-90<br>6400<br>1400<br>50                      | 3<br>1000<br>-200<br>80                  | volts<br>volts<br>volts<br>volts<br>ohms<br>ohms<br>milliamperes                                             |
| D-c Grid Current*, approx<br>Plate Input<br>Plate Dissipation<br>Peak R-f Grid Input Voltage, approx<br>Driving Power* approx                                                                                                                                     | 14<br>130                                                    | 20<br>50<br>40                           | milliamperes<br>watts<br>watts<br>volts<br>volts                                                             |

Driving Power\*, approx Plate Power Output

§ The filament is center-tapped and the center lead is brought out of the tube. With this design, it is possible to minimize the effect of filament-lead inductance by connecting all three filament leads in parallel through r-f by-pass condensers. The center lead of this parallel connection should not be returned directly to the center-tap of the filament-transformer winding or to ground although it may be bypassed to either of these points if desired.

35

watts

- \*\* Under typical operating conditions the grid voltage may be obtained from a fixed supply or by a cathode resistor of 2500 ohms.
- \* Subject to wide variations depending on the impedance of the load circuit. Highimpedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance circuits need less grid current and driving power, but plate circuit efficiency is sacrificed. The driving stage should be capable of delivering considerably more than the required driving power and should have a tank circuit of good regulation.
- $\pi$  At crest of audio-frequency cycle with modulation factor of 1.
- △ Obtained preferably from grid leak of value shown, or combination of grid leak with either fixed supply or suitably by-passed cathode resistor
- \* Modulation, essentially negative, may be used if the positive peak of the audiofrequency envelope does not exceed 115 per cent of the carrier conditions.
- Obtained from fixed supply, or grid resistor (6400), or by cathode resistor (1400). When the 8012 is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed

bias must be used to maintain the plate current at a safe value. With plate voltage of 1000 volts, a fixed bias of at least -40 volts should be used.

#### APPLICATION NOTES

The GL-8012 can be operated at frequencies as high as 500 megacycles. As the frequency is raised, the efficiency and power output fall off. At 600 mc, an efficiency of about 35 per cent can be expected. Since the efficiency at 600 mc is relatively low, the plate of the tube has been designed to have an unusually high dissipation rating. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown above). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 600 mc for the various classes of service. Special attention should be given to adequate ventilation of the bulb of these frequencies. In cases where free circulation of air around the tube cannot be provided, forced air-cooling is recommended.

500 600

#### Frequency, megacycles

| Max | Permissible<br>Voltage | Percentage o  | of Max | Rated | Plate |     |    |
|-----|------------------------|---------------|--------|-------|-------|-----|----|
|     | Class C, gri           | d-modulated   |        |       |       | 100 | 77 |
|     | pla                    | ate-modulated | 1      |       |       | 100 | 63 |
|     | tel                    | egraphy       |        |       |       | 100 | 63 |



Typical Characteristics GL-8012 K-8074671 4-18-42



www.SteamPoweredRadio.Com

Average Characteristics GL-8012 K-8074670 4-18-42



Outline Transmitting Tube GL-8012

к-8074669 6-3-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

6-44 (7M) Filing No. 8850

-

#### www.SteamPoweredRadio.Com

Tube Mounting

Position Vertical Only

Supersedes GET-991

## ELECTRONICS DEPARTMENT GENERAL DE ELECTRIC

### Transmitting Tube GL-8020--Description and Rating

#### TECHNICAL INFORMATION

The GL-8020 is a half-wave, high-vacuum rectifier tube. These data are for reference only. For design information see the specifications.

| GENERAL CHARACTERISTICS                                                       |              |                          |
|-------------------------------------------------------------------------------|--------------|--------------------------|
| Number of Electrodes                                                          | 2            |                          |
| Electrical<br>Cathode - filementary thonisted turgeter                        |              |                          |
| Voltage<br>Current<br>Heating Time (Before applying plate voltage)            | 5<br>5.5-6.5 | Volts<br>Amperes         |
| Tube Voltage Drop, I <sub>b</sub> = 100 milliamperes<br>Capacitance, filament | 200<br>1.4   | Volts<br>Micromicrofards |
| Mechanical                                                                    |              |                          |
| Type of Cooling - Convection<br>Maximum Ambient Temperature 60 C              |              |                          |
| Net Weight, approximate                                                       | 3            | Ounces                   |
| Shipping Weight, approximate<br>Installation and Operation - ET-J15           | 3            | Pounds                   |
|                                                                               |              |                          |

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

|                                       | Typical<br>Operation | Maximum<br>Ratings |              |
|---------------------------------------|----------------------|--------------------|--------------|
| Rectifier Operation                   |                      |                    |              |
| Peak Inverse Voltage                  |                      | 40,000             | Volts        |
| Peak Plate Current                    |                      | 750                | Milliamperes |
| Average Plate Current                 |                      | 100                | Milliamperes |
| Surge Limiting Diode Operation        |                      |                    |              |
| Maximum Filament Voltage              | 5.5                  | 5.8                | Volts        |
| Peak Forward Voltage                  | 100,000              | 12,500             | Volts        |
| Peak Plate Current, maximum           |                      |                    | Amperes      |
| Peak Plate Current, minimum available | 2                    |                    | Amperes      |
| Average Plate Dissipation             |                      |                    | Watts        |



Bottom View of Base K-6979168 9-23-44 Plate Characteristic K-5964496 9-26-44

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 2-45 (7M) Filing No. 8850

後

#### www.SteamPoweredRadio.Com



#### INDEX TO INSTRUCTIONS FOR RADIO TRANSMITTING TUBES

| Tube Type                                                                                | Instructions                                              | Tube Type                                                      | Instructions                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| GL-1L21, GL-1L33, GL-1L36,<br>GL-1L38<br>GL-1L22, GL-1L23, GL-1L25<br>GL-1S21<br>GL-3C23 |                                                           | GL-838.<br>GL-842.<br>GL-843.<br>GL-845.<br>GL-845.<br>GL-846. | GEH-980H<br>ET-H4<br>ET-H11<br>GEH-980H<br>ET-H1         |
| GL-146.<br>GL-152.<br>GL-159.<br>GL-169.<br>GL-203A.                                     | GEH-980H<br>GEH-980H<br>GEH-980H<br>GEH-980H<br>GEH-980H  | GL-849<br>GL-851<br>GL-857B<br>GL-858<br>GL-860                | GEH-980H<br>GEH-980H<br>GEH-977E<br>ET-H1<br>GEH-980H    |
| GL-204A.<br>GL-207.<br>GL-211.<br>GL-217C.<br>GL-242C.                                   | GEH-980H<br>ET-H1<br>GEH-980H<br>GEH-1066B<br>GEH-980H    | GL-861<br>GL-862A<br>GL-866A/866<br>GL-869B<br>GL-870A         | GEH-980H<br>ET-H1<br>GEH-1196<br>GEH-977E                |
| GL-266B<br>GL-276A.<br>GL-502.<br>GL-800.<br>GL-801.                                     | GEH-977E<br>GEH-980H<br>GEH-1287<br>ET-H8<br>GEH-980H     | GL-872.<br>GL-872A.<br>GL-872A/872.<br>GL-880.<br>GL-889.      | GEH-977E<br>GEH-977E<br>GEH-977E<br>ET-H1<br>ET-H1       |
| GL-802.<br>GL-803.<br>GL-805.<br>GL-806.<br>GL-807.                                      | GEH-1116<br>GEH-1115A<br>GEH-980H<br>GEH-1113A<br>ET-H3   | GL-889R.<br>GL-891.<br>GL-891R.<br>GL-892.<br>GL-892.          | GEH-1198<br>GEH-1123A<br>GEH-1122A<br>ET-H1<br>GEH:1120A |
| GL-809.<br>GL-810.<br>GL-811.<br>GL-812.<br>GL-813.                                      | GEH-1114<br>GEH-1111B<br>GEH-1110B<br>GEH-1108A<br>ET-H12 | GL-893A.<br>GL-893R.<br>GL-898A.<br>GL-1613.<br>GL-1614.       | ET-H1<br>GEH-1198<br>ET-H1                               |
| • GL-814<br>GL-815<br>GL-816<br>GL-828<br>GL-829                                         | GEH-1127B<br>GEH-1205A<br>ET-H2<br>GEH-1189A              | GL-1616.<br>GL-1619.<br>GL-1623.<br>GL-1641.<br>GL-8002.       | GEH-1213<br>GEH-1117<br>GEH-1104<br>ET-H1                |
| GL-830B<br>GL-833A<br>GL-835.<br>GL-836.<br>GL-837                                       | GEH-1190A<br>GEH-980H<br>GEH-1204A<br>ET-H6               | GL-8002R.<br>GL-8009.<br>GL-8010AR.<br>GL-8012.<br>GL-8020.    | GEH-1198<br>ET-H1<br>GEH-1239B<br>GEH-1258<br>GEH-1255   |

# GENERAL BELECTRIC

#### Water-cooled Transmitting Tubes -- Installation and Operation

INSTALLATION

#### MECHANICAL

The handling of a transmitting tube requires care since a tube may be damaged if subjected to shock or vibration.

The tube should be tested upon receipt in the equipment in which it is to be used. The glass bulb, and particularly the glass area around the terminals, should be free from foreign matter. The leads become hot during operation so that any foreign material may become charred and cause puncture of the bulb.

The standard jacket supports the tube in the correct vertical position with the filament end up. The tube must not be subjected to vibration or shock.

The tube should be placed in its water jacket carefully, centered accurately, and then firmly fastened. Secure the tube in its jacket before making the electrical connections. When the jacketclamping device is tightened, the contacts must seat properly on the tube flange. Proper seating in the jacket will be obtained by use of the standard gasketwhich is supplied with each tube. A new gasket must be used whenever a tube is placed in the jacket. It is recommended that the gasket be coated with a thin film of prodag to prevent sticking. The clamping device should first be tightened gently to prevent possible strain at the anode seal caused by improper seating of the flange. When this preliminary adjustment indicates the tube is seated properly, the jacket can be tightened securely. Do not tighten more than required to seat the anode flange properly on the gasket. If these precautions are not taken, the tube may be ruined by a glass crack caused by the uneven pressure on the flange. The grid and filament leads should not be taut, but should allow for some movement without placing a strain on the glass bulb. When electrical connections are made to the tube, care should be taken to exert as little bending movement as possible to the terminal pins. Before a readjustment of either the tube or its jacket is made, the leads should be disconnected. The retaining lugs, threads, and moving parts of the jacket may be kept free from rusting and sticking by coating them with a thin film of oil or oildag. Do not use an adhesive to seal the jacket against leaks because any sticking of the anode in the jacket may cause the tube to be damaged during its removal.

COOLING

The water-cooling system for the anode consists, in general, of a source of cooling water, a water jacket, and a feedpipe system which carries the water to and from the jacket. When the anode is at a high potential above ground, the feed-pipe system should have good insulation qualities and proper design to reduce the leakage current to a negligible value.

An outlet water thermometer and a water flowmeter are advisable since water flow and temperature are important. The water must not be allowed to boil and the flow must be great enough to prevent steam bubbles forming on the plate surface. The temperature of the water at the outlet must not exceed 70 C. Proper functioningof the water-cooling system is of the utmost importance. Even a momentary failure of the water flow will damage the tube. It is, therefore, necessary to provide a method for preventing operation of the tube during such a condition. This may be accomplished by the use of water-flow circuit breakers, or interlocks, which open the filament and plate power supplies whenever the flow is insufficient or ceases.

The cooling water should flow upward along the anode and the piping must be arranged to avoid air traps in the jacket. Excessive water hammer may develop peak water pressures sufficient to deform the anode. Therefore, the piping system must be installed and operated properly so that water hammer does not occur. The pressure in the jacket must not exceed 80 pounds per square inch. If necessary, relief valves should be installed to prevent excessive pressure. The rate of water flow given on the Description and Rating Sheet is usually sufficient for all types of service. Under abnormal conditions an increased rate of flow may be necessary to prevent overheating The formation of steam may be detected by the use of an improvised stethoscope which may consist of six feet of insulating tubing with proper safety precautions. The stethoscope is pressed against the jacket at various points while suitable listening observations are made.

Distilled water is recommended for cooling because it greatly reduces the probability of scale formation on the anode during life. Scale hinders proper transfer of heat from the anode to the water. The mineral content, flow, heat dissipation, temperature, etc., of undis-

tilled water are so varied that no specific recommendations to prevent scale can be made. A sample of the cooling water should be analyzed before plans are made for the water system. In general, water which shows a hardness greater than 10 grains per gallon should not be used. Regardless of the kind of water used, the system should be kept free from accumulation of foreign material. A 10 per cent solution of hydrochloric acid will ordinarily dissolve scale in emergency cases. After such treatment, the anode should be rinsed carefully. The tube must be removed from its jacket for this treatment and. since frequent removals are objectionable because of danger from accidental breakage, it is desirable to prevent the formation of scale.

When <u>forced-air cooling</u> is called for on the Description and Rating Sheet, a system should be used which consists of a blower with air ducts of proper cross-sectional area which supply air to suitable air nozzles. In certain of the larger tubes (such as the 862 and the 898) both the bulb and the stem must be air cooled. In these tubes the nozzle which supplies air to the filament stem is incorporated in the base, and the nozzle which supplies air to the bulb is part of the water jacket and acts as a combination air nozzle and electrostatic shield.

Tubes which require forced air cooling on the stem only have an air nozzle incorporated in the cathode base.

Where the air nozzle is not part of the base or water jacket and the grid and filament terminals and the bulb require air cooling, a nozzle should be provided as part of the air-cooling system to direct the cooling air toward the top portion of the bulb.

The system should be arranged so that the temperature of the glass is not more than 150 C at the hottest point. Even when forced air cooling is not called for on the Description and Rating Sheet, free circulation of air must be provided to limit the temperature of the glass to this value. When there is inadequate ventilation or where a tube is used at the higher frequencies, forced air cooling may be required. In such cases a small blower may be used with suitable nozzles directing the air to the areas where cooling is necessary.

The cooling air must not contain any foreign matter. The air-cooling system should be electrically interconnected with the filament and plate supplies to prevent the application of voltage to the tube without suitable cooling. Precautions should be taken to insulate the air-cooling system from the anode and grid. Air and water cooling of the GL-862 and -898 must be continued for ten minutes after power has been removed. For all other types water cooling only must be continued for two minutes after shutdown.

#### ELECTRICAL

Suitable meters should be provided for reading filament voltage, plate voltage, and current, and d-c grid current. A tube life recording meter (to read hours of operation) should also be provided.

The installation of all wires and connections must be made so that they do not lie on or close to the glass of the tube. Otherwise, severe trouble may arise from corona discharge or increased dielectric loss which will result in almost certain puncture.

The filament circuit carries a high current at low voltage. Therefore, the usual precautions should be taken against loss of voltage and heating due to poor connections. The filament connectors particularly should be large and make good contact.

In the case of the 8002 tube, three filament leads are brought out to terminals. These may be paralleled by capacitors to reduce the inductance of the filament circuit for the r-f returns. The filament sections must be operated in series from the filament supply. The center tap is to be used only for r-f or power supply returns.

The high initial rush of current through the filament when the switch is first closed should be limited by the use of some form of filament starter. This may be a system of time-delay relays cutting resistance out of the circuit or high-reactance filament transformer or a manual control. In any case, the starting current must never, even momentarily, exceed 1 1/2 times the normal value. Provision must be made also for accurate adjustment and maintenance of the filament voltage. The filament voltmeter should be connected to indicate the voltage at the filament terminals. The filament base should not be connected to ground or to any part of the circuit. Filament power may be alternating current or direct current. When alternating current is used, the plate and grid circuit returns should be made to the center point of the filament supply. When direct current is used, these returns should be made to the negative terminal.

For multiphase filament tubes it is essential that the connections for each type of filament voltage supply be made according to the circuit diagram to prevent distortion and possible failure of the filament.

The plate circuit should be provided with a time-delay relay to delay the application of plate voltage until the filament has reached at least 80 per cent of the normal voltage. It must be provided also with protective devices to prevent the tube from drawing a heavy overload. The coil of an instantaneous overload relay (set for slightly higher than normal plate current) placed in the ground lead of the plate return and operating to remove the plate voltage may be used for this purpose. The total time required for the operation of the relay and breaker should be in the order of one-tenth second and not more than one-sixth second. Plate series protective resistors should also be provided to protect the tube from excessive energy dissipation during instantaneous failure of insulation, within the tube or within the transmitter. The minimum value of this resistor which will give adequate protection with minimum power loss is given on the Description and Rating Sheet. Precautions must be taken so that no high capacitance is connected directly across the tube in such a manner that a disturbance within the tube will discharge appreciable energy from the capacitor.

The grid circuit should be provided with heavy conductors, carefully connected, in order to prevent overheating of the grid terminal due to r-f currents.

In the 8002 tube three grid leads are brought out to terminals. These may be used in parallel to reduce the inductance of the grid circuit. If desired, to reduce coupling, one lead may be used for the neutralizing circuit and the other two for the grid-excitation circuit. When the tube is used in an oscillator circuit at the higher frequencies, it may be necessary partially to neutralize the feedback in order to prevent excess grid excitation caused by the normal grid-plate capacitance.

If two or more tubes are used in the circuit, controls should be provided so that adjustment may be made to balance properly the plate current taken by each tube.

In Class B service, grid bias of excellent regulation is usually required.

In Class C service, the bias voltage may be supplied by a grid leak, or by a combination of grid leak and generator, grid leak and rectifier, or grid leak and cathode-bias resistor suitably by-passed. The combination method is particularly suitable to reduce distortion, especially in plate-modulated operation. Since the grid-bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.

The <u>circuits</u> should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.

#### OPERATION

When a new tube is first placed in operation, it should be operated without plate voltage for fifteen minutes at rated filament voltage. After this initial preheating schedule, plate voltage can be applied. Operate for fifteen minutes at approximately one-half the usual plate voltage. Full voltage may then be applied and the tube operated under the normal load conditions for a period of one hour or more. Every three months spare tubes should be given the preheating and initial operation schedule discussed above.

The filament should be operated at constant voltage rather than constant current and must be allowed to reach at least 80 per cent normal voltage before plate. voltage is applied. Intermittent power supply interruptions may be allowed provided the time off does not exceed one second. If the tube is to be used at relatively low output, the plate current will be less than normal, requiring less than normal emission of the filament. The filament, therefore, may be operated at a voltage slightly lower than rated voltage, giving longer life. The permissible reduction in filament voltage may be checked by reducing the 'filement voltage with the transmitter under normal operation to a value where reduction in output or increase in distortion can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament supply voltage. Care must be taken that sufficient emission is provided. Otherwise, instability of operation or excessive distortion may be experienced, or the rated plate dissipation of the tube may be exceeded. From the viewpoint of tube life, it is usually economically advantageous to provide good regulation of the filament voltage. For example, if the filament is operated continuously at 6 per cent above normal voltage, the evaporation life will be reduced to approximately onehalf.

When a three-phase or six-phase a-c filament-supply voltage is used, the phase voltages must all balance within 15 per cent during the filament starting period. During normal operation the phase voltages must never, even momentarily, exceed 10 per cent unbalance.

If the apparatus in which the tube is used is to be idle for periods not exceeding two hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately 80 per cent of the rated value during the standby. Where stand-by periods exceed two hours the filament voltage may be removed.

When direct-current filament excitation is used, the filament leads should be reversed every 500 hours of operation.

Maximum ratings and typical operating conditions for each recommended class of service are given on the Description and Rating Sheet. The amplifier classifications used are those given in the Report of the Standards Committee of the Institute of Radio Engineers.

The output values given in the tabulation on the Description and Rating Sheet are approximate tube outputs under certain typical operating conditions. These must not be used as output ratings; circuit losses must be subtracted from the tube output in calculating the useful output.

The approximate anode dissipation may be calculated from the following expression:

$$P_{\text{(kilowatts)}} = \frac{n(T_2 - T_1)}{(4)}$$

in which  $(T_1)$  is the known initial temperature of the cooling water in degrees centigrade,  $(T_2)$  the temperature of the water at the water jacket outlet in degrees centigrade, and (n) the water flow in gallons per minute.

In determining the value of plate voltage for normal operation, the line voltage fluctuation, load variation, and manufacturing variations must be estimated

/ See Description and Rating Sheet

so that the maximum rated values will not be exceeded.

When a new circuit is fried or when adjustments are made, the plate voltage should be reduced to approximately onehalf the rated value to prevent damage to the tube or associated apparatus. After correct adjustment has been made with the tube operating smoothly and without excessive heating of the cooling water or the glass bulb, the plate voltage may be raised in several steps to the desired value. Adjustments should be made at each step for optimum operation.

In case of overload and resultant overheating of the tube, the vacuum may be impaired. When the quantity of gas is not too great, the tube may be operated to bring about an electrical cleanup of the gas. The first step in the process should be a short period of operation at a plate voltage of one-half the normal value. The plate voltage should then be increased to the normal value and the tube allowed to operate for a period of one hour or more. In severe cases it may be possible to age the tube by operating with a series resistor in the plate supply. Short periods of operation may be conducted at each step as the resistor is reduced until stable operation at the normal plate voltage is obtained.

Before turning off the water preparatory to removing the tube, be sure that the inner electrodes are below red heat. Do not force the tube when removing it from the jacket. Release the securing device so that it will not stick, then manipulate the tube carefully to avoid putting strains on the glass. If sticking does occur, rotate the tube gently back and forth, at the same time raising it carefully.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

2-44 (7M) Filing No. 8850 Supersedes GEH-1152B

# GENERAL C ELECTRIC

#### Transmitting Tube GL-816--Installation and Operation

#### INSTALLATION

The BASE of the 816 fits the standard 4-contact socket which should be installed to hold the tube in a vertical position with the base down. The plate connection is made to the cap at the top of the bulb.

The CONDENSED-MERCURY temperature of the 816 should be maintained between 20 C (68 F) and 60 C (140 F). This temperature can be measured with a thermocouple or a small thermometer attached with a minimum amount of putty at a point near the base end of the bulb. Lower than recommended condensed-mercury temperature raises the potential at which the tube starts and is unfavorable for long filament life. Higher than recommended condensed the potential at which the tube starts and is unfavorable for long filament life but reduces the peak inverse voltage which the tube can stand.

The COATED FILAMENT should be operated at the rated value of 2.5 volts under average operating conditions. The filament voltage, measured at the tube terminals, should not vary more than  $\pm$  5 per cent from the rated value. This tolerance should include the effects of regulation caused by transmitter-modulation load as well as the normal power-supply regulation. Less than the recommended filament voltage may cause a high voltage drop with consequent bombardment of the filament and eventual loss of emission. Greater than the rated voltage will also shorten the life of the filament.

CAUTION SHOULD BE OBSERVED WHEN THE FILAMENT VOLTAGE IS MEASURED BECAUSE THE FILAMENT CIRCUIT IS AT HIGH D-C POTENTIAL.

The filament of the 816 should be allowed to come up to operating temperature before the plate voltage is applied. For average conditions, the delay should be approximately 10 seconds. If there is evidence of arc-back in the tube, the delay should be increased. In radio transmitters during "standby" periods, the filament should be kept at its rated voltage to avoid delay in "coming back". A protective relay is desirable in the plate circuit to prevent automatically the application of plate voltage until the filament has reached operating temperature.

When an 816 is first placed in service, the filament should be operated at normal voltage for approximately five minutes without plate voltage in order to distribute the mercury properly. This procedure need not be repeated unless, during subsequent handling, the mercury is spattered on the filament and plate.

The 816 should be isolated from the transmitter as much as possible in order to avoid the detrimental effects of electromagnetic and electrostatic fields. These fields tend to produce breakdown in the mercury vapor, are detrimental to tube life and make filtering difficult. External shielding should be used when the tubes are in proximity to these external fields. R-f filtering should be used when the tubes are affected by r-f voltages. When shields are used, special attention must be given to adequate ventilation and to the maintenance of normal condensed-mercury temperature.

#### OPERATION

Filter circuits of either the condenser-input or the choke-input type may be used. If the condenser-input type of filter is used, special attention must be given to the instantaneous peak value of the a-c input voltage which is about 1.4 times the rms value as measured with an a-c voltmeter. It is important, therefore, that the filter condensers (especially the input condenser) have a sufficiently high breakdown rating to withstand this instantaneous peak value. With the condenser-input type of filter, the peak plate current of the tube is considerably higher than the load current. When choke-input to the filter is used, the peak plate current is substantially reduced. This type of filter is preferable from the standpoint of obtaining the maximum continuous d-c output current from the 816 under the most favorable conditions.

Two or more 816's may be connected in parallel to give a corresponding increase in output current over a single tube. In this service, a stabilizing resistor of approximately 50 ohms should be connected in series with each plate in order that a proportionate share of the total load current will be carried by each tube. In special cases where it is desirable to minimize the small power loss caused by the voltage drop through the stabilizing resistor, an inductance of approximately one-third henry may be connected in series with the plate lead of each tube in place of the stabilizing resistor. The inductance has the added advantage of limiting the peak current to each tube, which is especially desirable when a condenser-input type of filter is used.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-44 (10M) Filing No. 8850



#### **Transmitting Tube GL-807 - - Installation and Operation**

#### Installation

The <u>base</u> of the 807 fits a standard five-contact socket which may be installed to hold the tube in any position.

The <u>heater voltage</u>, under the maximum screen and plate dissipation conditions, should never fluctuate so that it exceeds 7.0 volts.

The heater should be operated at normal filament voltage during stand-by periods. If the stand-by periods exceed two hours the filament current may be shut off

The <u>cathode</u> circuit of the 807 should be connected to the electrical midpoint of the heater circuit when the heater is operated from an a-c supply. When the heater is operated from a d-c source, the cathode circuit should be connected to the negative heater-supply lead. In circuits where the cathode is not directly connected to the heater, the potential difference between them should not exceed 100 volts. If the use of a large resistor is necessary between heater and cathode in some circuit designs, it should be by-passed by a suitable filter network to avoid the possibility of hum.

The <u>plate</u> of the 807 shows no color when the tube is operated at its maximum plate-dissipation rating for each class of service.

The screen voltage may be obtained from a separate source, from a potentiometer, or from the plate supply through a series resistor, depending on the service in which the tube is used (see OPERATION). When the screen voltage is obtained from a separate source, or from a potentiometer, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screen only, the screen current may rise high enough to cause excessive screen dissipation. When screenvoltage regulation is not an important factor, the series-resistance method for obtaining screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. The screen should not be allowed to attain a temperature corresponding to more than a barely perceptible red color. This temperature corresponds to the screen input values shown under CHARACTERISTICS.

It is, perhaps, not too well known that the screen current is a very sensitive indication of plate-circuit loading and that screen current rises excessively (often to the point of damaging the tube) when the amplifier is operated without a load. Therefore, care should be taken when tuning an 807 under no-load conditions in order to prevent exceeding the screen-input rating of the tube.

A protective device, such as a highvoltage fuse, should be used to protect both the screen and plate against overloads. When a potentiometer of poor regulation or a series resistor is used for obtaining the screen voltage, the protective device should be placed in the common positive high-voltage supply lead. Tt. should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When the screen voltage is obtained from a separate source or from a potentiometer of good regulation, a protective device should also be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

Shielding and isolation of the input circuit are necessary for and output stable operation. In some cases where the tube is used as an r-f amplifier, neutralization may be necessary to prevent feedback. The r-f impedance between the screen and cathode must be kept low, usually by means of a suitable by-pass condenser. The capacitance of this condenser may be in the order of 0.01 to 0.1 microfarad. In telephone service when the screen is modulated, a smaller capacitance may be required in order to avoid excessive a-f by-passing. However, if the capacitance is too small, r-f feedback may occur between plate and control grid, depending on the circuit layout, operating frequency, and power gain of the stage. A-f by-passing difficulties can usually be eliminated if the screen by-pass condenser is replaced by a series-tuned circuit to resonate at the operating frequency. The

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com series-tuned circuit presents a high impedance to audio frequencies but a very low impedance to its resonant frequency.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This may be done by means of a protective resistance of about 3000 ohms in series with the positive high-voltage supply lead. When a fixed screen supply is used, a protective resistor of about 10,000 ohms should also be employed in the screen lead.

#### Operation

In <u>push-pull Class AB2</u> audio service, the 807 may be operated as shown under CHARACTERISTICS. The values cover operation with fixed bias and have been determined on the basis that some grid current flows during the most positive swing of the input signal.

In <u>Class B r-f service</u>, the 807 may be supplied with screen voltage from a separate source or from a potentiometer connected across the plate supply. Control-grid bias may be obtained from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably bypassed for both audio and radio frequencies.

In <u>plate-modulated</u> Class C r-f service, GL-807 can be modulated 100 per cent. The screen voltage should preferably be obtained through a voltage-dropping resistor connected in series with the <u>modulated</u> plate-voltage supply. The screen voltage may also be obtained from a separate source, or from a potentiometer across the plate-voltage supply. In this case, modulation of the screen voltage can be accomplished either by connecting the screen to a separate winding on the modulation transformer, or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable impedance should be connected in series with the screen-supply lead. Control-grid bias should be obtained from a 'grid leak or from a combination of either a grid leak and cathode resistor or grid leak and fixed supply.

In <u>Class C r-f telegraph service</u>, the GL-807 may be operated with screen voltage by any of the methods shown under INSTAL-LATION. Grid bias may be obtained by any convenient method.

When more radio-frequency power output is required than can be obtained from a single 807, the push-pull or the parallel connection may be used. Two tubes connected in push-pull or parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of cancelling even-order harmonics from the output and of simplifying the balancing of The circuits high-frequency circuits. should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (20M) Filing No. B8850

Superseding GEH-1112B PRINTED U.S.M.

#### ELECTRONICS DEPARTMENT

## GENERAL 🍘 ELECTRIC

#### Transmitting Tube GL-842 -- Installation and Operation

#### INSTALLATION

The base pins of the 842 fit the standard 4-contact socket. The socket should be installed to hold the tube in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the socket should be mounted with the filament-pin openings one vertically above the other so that the plate will be in a vertical plane (on edge).

The bulb of this tube becomes very hot during continuous operation. For this reason it should not come in contact with any metallic body nor be subjected to drops or spray of liquid. Free circulation of air should be provided.

The filament of the 842 is of the thoristed-tungsten type. It may be operated either from an a-c or a d-c source. An a-c supply is generally used because of its convenience. The grid voltages shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS are based on a-c filament operation. When direct current is used on the filament, the circuit returns should be connected to the negative filament terminal. A suitable voltmeter should be connected permanently across the tube filament terminals to provide a ready check of the filament voltage. This voltage should not vary more than plus or minus 5 per cent from the rated value, otherwise, a loss of filament emission may result. When the apparatus in which the tube is used is idle for periods not exceeding two hours, the filament should be maintained at its rated voltage during the "standbys".

The plate of the 842 shows no color at the maximum plate-dissipation rating of 12 watts for class A service.

Overheating of the GL-842 by severe overload may decrease filament emission. The activity of the filament can sometimes be restored by operating it at rated voltage for ten minutes or more with no voltage on the plate or grid. The process may be accelerated by raising the filament voltage to 9.0 volts (not higher) for a few minutes. In order to prevent overheating due to improper circuit adjustments, to overloading, or to loss of grid bias, the plate circuit should be provided with a protective device such as a fuse. This device should instantly remove the plate voltage when the d-c plate current reaches a value 50 per cent greater than normal.

In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variation, the maximum rated voltages will not be exceeded.

When a new circuit is tried, or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect.

#### OPERATION

As a class A audio-frequency amplifier or modulator, the GL-842 is capable of delivering 3 watts of audio power with not more than 5 per cent second-harmonic distortion. Typical operating conditions for single-tube operation are shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias may be obtained from a separate source or from a cathode-bias resistor. This resistor may be by-passed depending on design requirements. The use of an unby-passed resistor will reduce distortion but at the same time decrease power sensitivity. If by-passing is use,, it is important that the by-pass condenser be sufficiently large to have negligible reactance at the lowest frequency to be amplified.

In cases where the input circuit to the 842 is resistance- or impedance-coupled, the d-c resistance in the grid circuit should not be made too high. A resistance value of 1.0 megohm for one 842 is the recommended maximum when cathode bias is used. With fixed bias, the d-c resistance in the grid circuit should not exceed 0.25 megohm.

If more audio power output is desired than can be obtained from a single tube, two or more tubes can be operated in parallel or in push pull. The parallel connection provides twice the output of a single tube with the same input-signal voltage. The push-pull connection requires twice the input-signal voltage, but has in addition to the increase in power, a number of important advantages over single-tube operation. Distortion due to even-order harmonics and hum due to plate-supply ripple voltages are either eliminated or decidedly reduced through cancellation in the output circuit. Because harmonic distortion is reduced, appreciably more than twice singletube output can be obtained by using a plate-to-plate load. resistance only slightly larger than the value for single-tube operation.

If the bias for the tubes in push pull is supplied by a single cathode resistor, a large by-pass condenser should be used across the resistor to minimize distortion. With either the parallel or the push-pull circuit, the d-c grid bias is the same as for a single tube. When a number of tubes are operated in parallel or in push pull, it may be necessary to provide individual adjustment of grid bias to insure that the plate dissipation of each tube does not exceed the maximum rated value. This can be accomplished by means of a tapped C-supply, or by means of a variable cathode-bias resistor for each tube. A separate filament-supply winding is necessary for each tube that is individually biased with a cathode resistor. When tubes are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with each grid lead, at the tube socket, to prevent parasitic oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (4M) Filing No. 8850

# GENERAL C ELECTRIC

#### Transmitting Tube GL-837--Installation and Operation

#### Installation

The 12.6-volt heater of the 837 may be operated from either an a-c or a d-c supply. It is designed to operate under normal conditions of line-voltage or battery-voltage variation. In radio transmitters during "stand-by" periods, the heater should be maintained at its rated voltage for convenience in promptly resuming transmission. If the standby periods exceed two hours, the filament current may be shut off. In circuits where the heater and cathode are not directly connected together, the potential difference between them should not exceed 100 volts. If the use of a large resistor is necessary between heater and cathode in some circuit designs, it should be by-passed by a suitable filter network to avoid the possibility of hum.

Other installation requirements are similar to those for the 802. (See publication GEH-1116).

#### Operation

In Class B r-f pentode service, the 837 is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. The suppressor voltage may be obtained from any fixed d-c supply. In cases where the suppressor draws current, the supply should be a battery or other d-c source of good regulation. Controlgrid bias may be obtained from a battery, from a rectifier of good voltage regulation, or from a cathode resistor, suitably by-passed for audio and radio frequencies.

In suppressor-modulated Class C r-fservice, the 837 is supplied with unmodulated d-c plate voltage. The control grid is supplied with unmodulated r-fvoltage, and the suppressor with nega-

tive d-c voltage modulated at audio frequency. The screen voltage should be obtained through a resistor in series with the plate supply (see INSTALLATION). The d-c suppressor voltage may be obtained from any fixed supply. Controlgrid bias for this service may be obtained from a grid leak, from a cathode resistor, or from a fixed supply. The cathode resistor should be by-passed for audio and radio frequencies. The gridleak method has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. Special care must be observed with the use of this system because the accidental removal of the excitation will cause the plate current to rise to an excessive value. The use of a protective device designed to remove the screen and plate voltages on excessive rises of plate current will minimize the danger of overload (see INSTAL-LATION). Control-grid bias is not critical so that correct adjustment may be obtained with widely different values.

In grid-modulated Class C r-f pentode service, the 837 is supplied with an unmodulated r-f grid voltage and with a d-c grid bias that is modulated at audio frequencies. Grid bias should be obtained from a fixed supply. The plate is supplied with unmodulated d-c voltage. The audio power required in this service must be sufficient only to meet the peak power requirement of the grid of the Class C amplifier on the positive crest of the input signal. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. The suppressor voltage may be obtained from a battery or from a fixed supply of good regulation.

In <u>plate-modulated Class C r-f pen-</u> tode service, the 837 can be modulated 100 per cent. The screen voltage may be obtained from a fixed supply, or through a voltage-dropping resistor in series with the <u>modulated</u> plate supply. The screen voltage must be modulated with the plate voltage so that the ratio of

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com screen voltage to plate voltage remains constant. Modulation of a fixed screenvoltage supply can be accomplished either by connecting the screen to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. The suppressor voltage may be obtained from any fixed Control-grid bias may be obsupply. tained from a grid leak, or from a combination of either grid leak and fixed supply or grid leak and cathode resistor The cathode resistor should be by-passed for audio frequency and radio frequency. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion effects by biassupply compensation. Grid bias voltage for this service is not particularly critical.

In plate-modulated Class C r-f tetrode service, the 837 is capable of being modulated 100 per cent. Grids No. 2 and 3 are connected together as The screen voltage may be the screen. obtained through a voltage-dropping resistor in series with the unmodulated plate-voltage supply. In this case, the series resistor develops its own modulating voltage. The screen voltage may also be obtained from a separate source, or from a potentiometer across the plate-voltage supply, provided the screen voltage is modulated as discussed under plate-modulated Class C r-f amplifier service (pentode connection) for a fixed screen supply. Control-grid bias considerations are the same as those for plate-modulated Class C pentode service.

In <u>Class C</u> r-f telegraph service with the pentode connection, the 837 may be supplied with suppressor and screen voltage by any of the methods shown under INSTALLATION. Control-grid bias may be obtained by any convenient method. In <u>Class C r-f</u> telegraph service with the tetrode connection, the 837 is operated with grids No. 2 and 3 connected together as the screen. The screen voltage may be obtained by any of the methods shown under INSTALLATION. Control-grid bias may be obtained by any convenient method.

As a pentode or tetrode oscillator (crystal or self-excited), the  $8_{37}$  may be operated under the conditions shown for Class C telegraph services. Because the internal shielding in this tube is unusually effective, it is generally necessary to introduce external feedback in those circuits which depend on the control-grid-to-plate capacity for oscillation. This may be done by the use of a small condenser not larger than 2 to 3 µµf connected between control grid and plate.

If more radio-frequency power output is required than can be obtained from a single 837, the push-pull or the parallel connection may be used. For example, two tubes connected in pushpull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube.

The push-pull arrangement has the advantage of balancing high-frequency circuits to ground and of canceling the even-order harmonics from the output. If parasitic oscillations occur in the parallel or push-pull circuits, a noninductive resistor of 10 to 100 ohms and a choke coil or other suitable network connected in series with the grid lead of each tube, as close to the socket connection as possible, will often prevent the oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

3-44 (6M) Filing No. B8850



Supersedes

GEH-1106A



#### Transmitting Tube GL-800—Installation and Operation

#### Installation

The <u>base</u> of the 800 fits the standard 4-contact socket, such as the Type UR-542A. The socket should be installed to hold the tube in a vertical position with the base either up or down. The filament terminals are connected to the two large base pins; the grid and plate leads are brought out to separate metal caps at the top of the bulb (for connections, see Description and Rating Sheet).

The <u>filament</u> of the 800 is of the thoriated-tungsten type. The filament voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. It is recommended that, in intermittent service when the average number of daily transmissions is greater than 100, the filament be maintained at 80 per cent of normal voltage during stand-by periods. If the number of transmissions is less than 100 per day, the filament power should be removed during stand-by periods.

The <u>plate</u> of the 800 shows no color at the maximum plate-dissipation rating for each class of service.

Overheating of the 800 by severe overload may decrease filament emission. Filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by raising the filament voltage to 9 volts (not higher) for a few minutes. The positive high-voltage supply lead of the 800 should be provided with a protective device, such as a high-voltage fuse, to prevent the tube from drawing excessive plate current. This device should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal.

In order that the maximum ratings given under CHARACTERISTICS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate voltage. This may be done conveniently by means of a resistance of about 8000 ohms in series with the high-voltage plate lead. The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially those in which the exposed circuit parts are at the high d-c plate potential.

#### Operation

In Class B modulator or a-f amplifier service, two 800's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B a-f stage. Grid bias may be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation.

In <u>Class B r-f service</u>, the 800 is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. Grid bias may be obtained from a battery, from a rectifier of good regulation, or from a cathode-bias resistor, suitably by-passed for audio and radio frequencies.

The maximum plate voltage values shown under CHARACTERISTICS for Class B
services may be used provided the plate current for each service is limited so that the respective maximum plate-input rating is not exceeded. In like manner, the maximum plate-current values may be used provided the plate voltage for each service is limited so that the respective maximum plate-input rating is not exceeded.

In plate-modulated Class C r-f service, the 800 may be supplied with grid bias from a grid leak, or from a suitable combination of either grid leak and fixed supply, or from a grid leak and cathode-bias resistor. The cathode resistor should be suitably by-passed for audio and radio frequencies. The combination methods are particularly desirable because distortion effects are minimized by bias-supply compensation. Grid-bias voltage is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In Class C r-f telegraph service, the 800 may be supplied with grid bias by any convenient method.

The 800 may be operated at maximum ratings in all classes of service at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are re-

\* See Description and Rating Sheet.

duced as the frequency is raised. (Other maximum ratings are the same as shown under CHARACTERISTICS.) The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used at 60, 75, and 120 mc for any class of service.

If more radio-frequency power output is required than can be obtained from a single 800, the push-pull or the parallel connection may be used. For example, two tubes connected in pushpull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube. The push-pull arrangement has the advantage of balancing high-frequency circuits to ground and of cancelling the even-order harmonics from the output. If parasitic oscillations occur in the parallel or push-pull circuits, a noninductive resistor of 10 to 100 ohms and a choke coil or other suitable network connected in series with the grid lead of each tube, as close to the grid terminal as possible, will often prevent the oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

GENERAL & ELECTRIC

# Transmitting Tube GL-843—Installation and Operation

#### Installation

The <u>base</u> pins of the 843 fit the standard five-contact socket which may be installed to operate the tube in any position. However, operation of the tube in the base-up position is least preferable.

The <u>bulb</u> of this tube becomes very hot during continuous operation. Free circulation of air, therefore, should be provided. Care should be taken that the bulb does not come in contact with any metallic object nor be subjected to the drops or spray of liquid.

The <u>heater</u> of the 843 is designed to operate at 2.5 volts. The heater supply may be either alternating current or direct current; alternating current is usually more convenient. The voltage across the heater terminals should be checked periodically. In radio transmitters during "stand-by" periods, the heater should be maintained at its rated voltage for the convenience of the operator in promptly resuming transmission.

The <u>cathode</u> should preferably be connected directly to a midtap on the heater winding or to a center-tapped resistor across the heater supply. If this is not done, the potential difference between cathode and heater should be limited to 45 volts.

The plate dissipation of the 843 (the difference between input and output) should never exceed the maximum value given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. The plate should not show color under any condition of operation.

A d-c milliammeter should be used in the plate circuit in order that the plate current can always be known. Under no conditions should the d-c plate current exceed the maximum values given under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS.

Heavy leads and conductors together with suitable insulation should be used in all parts of the r-f plate tank circuit in order that the losses, due to the r-f voltages and currents, can be kept at a minimum. These losses are especially noticeable at the higher frequencies. When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 3000 ohms in series with the plate lead during such adjustments.

#### Operation

As a <u>Class A audio-frequency ampli-</u><u>fier</u>, the 843 is capable of delivering 1.6 watt of audio-frequency power with very low distortion. Typical operating conditions are shown under MAXIMUM RAT-INGS and TYPICAL OPERATING CONDITIONS.

<u>Grid bias</u> for Class A service may be obtained from a separate voltage source or by means of a self-bias resistor. The proper value of this resistor for use with a single tube is 1000 ohms at a plate voltage of 350 volts, and 1400 ohms at a plate voltage of 425 volts. The cathode resistor should be shunted by a condenser which is large enough to minimize degenerative effects at low audio frequencies.

If more audio output is desired than can be obtained from a single 843, two 843's may be operated in parallel or in push-pull. The parallel connection provides twice the output of a single tube without an increase in grid-signal voltage. The push-pull connection will give slightly more than twice the output at the same grid bias but requires twice the input signal.

When a group of 843's is operated in Class A parallel, it may be necessary to provide individual adjustment of grid bias to insure that the plate dissipation of each tube does not exceed the maximum value of 12 watts. This may be accomplished by means of a tapped "C" supply or by means of a variable selfbias resistor for each tube. If selfbias is used, each cathode resistor should be shunted by a condenser large enough to minimize degenerative effects at low audio frequencies. Furthermore, when the tubes are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with each grid lead, next to the tube socket, to prevent parasitic oscillations.

When two 843's are operated under <u>Class A push-pull</u> conditions, it is usual practice to obtain the grid-bias voltage from a common biasing resistor. In such cases, the value of the resistor is equal to one-half of the value recommended for single tube operation, and the condenser filter is not necessary. If the plate dissipation rating is exceeded under these conditions, the size of the biasing resistor should be increased sufficiently to prevent overloading either tube.

In cases where the input circuit to the 843 is resistance-coupled or impedance-coupled, the resistance in the grid circuit should not be made too high. A resistance value of 0.5 megohm for one 843 is the recommended maximum when selfbias is used. Without self-bias, the grid resistance should not exceed 100,000 ohms.

An <u>output device</u> should be used to transfer audio power efficiently from the 843 to the voice coil of the reproducing unit or to the next audio stage.

As a <u>Class B or Class C radio-fre-</u> <u>quency amplifier</u>, the 843 may be used as shown under MAXIMUM RATINGS and TYPI-CAL OPERATING CONDITIONS.

In <u>Class B</u> radio-frequency service, the plate is supplied with unmodulated d-c voltage and the grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. The plate dissipation should not exceed 15 watts for unmodulated carrier conditions.

Grid bias for the 843 as a Class B r-f amplifier should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply such as a gridleak, nor from a rectifier, unless the latter has exceptionally good voltage regulation. For Class C (telegraph) service, grid bias may be obtained from a grid leak of about 25,000 ohms, from a battery, from a rectifier of good regulation, or from a cathode-bias resistor (preferably variable) by-passed with a suitable condenser. The cathode-bias method is especially desirable due to the fact that the grid bias is automatically regulated and that there is little chance of the plate current becoming dangerously high either with

or without r-f grid excitation. When the grid-leak method of obtaining grid bias is used, bias is on the tube <u>only</u> when r-f grid excitation is applied. Since grid-bias values are not particularly critical, correct circuit adjustment may be obtained with widely different values. For <u>Class C (telephone) service</u>, fixed bias is recommended because it eliminates the problems of degeneration caused by a-f voltages developed across the biasing system.

The d-c grid current will vary with individual tubes. Under any condition of operation the maximum value should not exceed 7.5 milliamperes.

The 843 can be used at full ratings at frequencies up to 6 megacycles, and at reduced ratings up to 30 megacycles. For operation at the higher frequencies, the plate voltage must be reduced as the frequency is raised so that at 30 megacycles, the plate voltage, plate current, plate dissipation, and d-c grid current will not exceed 50 per cent of the maximum ratings. The r-f grid current, under any conditions should never exceed the maximum rated value. Special attention should be given to adequate ventilation and the maintenance of normal ambient temperatures.

If more r-f power output is required than can be obtained from a single 843, two of these tubes may be used either in parallel or in push-pull. The parallel connection provides approximately twice the power output of a single tube without an increase in exciting voltage, while the push-pull connection gives twice the output but requires twice the r-f excitation voltage; with either connection the grid bias is the same as for a single tube. The push-pull arrangement is advantageous in reducing the shunting effect of the interelectrode capacities, inasmuch as these capacities are in series. This reduction is especially desirable when the tubes are operated at higher frequencies.

When two or more 843's are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with the grid lead of each tube, close to the socket terminal, to prevent parasitic oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

4-44 (8000) Filing No. B8850

USA

### **ELECTRONICS DEPARTMENT**

GENERAL 🛞 ELECTRIC

## Transmitting Tube GL-813—Installation and Operation

#### Installation

The base of the 813 fits a special 7-contact transmitting socket which should be mounted to hold the tube in a vertical position with its base either up or down. If it is necessary to place the tube in a horizontal position, the filament-base pins should be placed one vertically above the other so that the plate will be in a vertical plane (on edge).

The bulb becomes very hot during continuous operation of the tube so that free circulation of air around the tube should be provided. The installation of all wires and connections should be made so that they will not be close to or touch the bulb in order to avoid puncture of the glass.

The beam-forming plates of the 813 are connected to a separate base pin. They should always be operated at zero potential with respect to the filament; never positive. When the filament is operated from an a-c supply, the beam-forming plates should be connected to the midpoint of the filament circuit. When the filament is operated from a d-c supply, they should be connected to the negative end of the filament.

The filament of the 813 is of the thoriated-tungsten type. The filament voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, loss of filament emission may result. It is recommended that if the average number of daily interruptions of the transmitter is greater than 100 per day, the filament voltage should be maintained at 80 per cent of normal during the stand-by periods. If the number of interruptions is less than 100 per day, the filament power may be removed during stand-by periods.

The screen voltage should preferably be obtained from a separate source or from a potentiometer, although it may also be obtained from the plate supply through a series resistor. When the screen voltage is obtained from a separate source, or from a potentiometer, plate voltage should be applied before the screen voltage, or simultaneously with it; otherwise, with voltage on the screen only, the screen current may be large enough to cause excessive screen dissipation. When the screen-resistor method is used, the resistor should have a value sufficient to drop the high voltage to a value which is within the maximum screen-voltage rating given under CHARACTERISTICS. When the series screen resistor is used, it is important that the high-voltage supply switch be opened before the filament circuit is opened and before the r-f excitation is removed; otherwise, full supply voltage will be placed on the screen.

A protective device, such as a highvoltage fuse, should be used to protect both the screen and plate against over. loads. When a bleeder resistor of poor regulation or a series resistor is used for obtaining the screen voltage, the protective device should be placed in the common positive high-voltage supply lead. It should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When the screen voltage is obtained from a separate source or from a bleeder of good regulation, a protective device should also be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

Shielding and isolation of the input and the output circuits are necessary for stable operation. If an external shield is used with the 813, it should be designed to enclose the base end of the tube and extend up to a position level with the internal circular shield disk located below the plate. Clearance between the glass bulb and external shield should be at least 1/16 in. The impedance between the screen and filament must be kept low; usually by means of a suitable by-pass condenser. The capacitance of this condenser may be in the order of 0.01 to 0.1 µf. In telephony service when the screen is modulated, a smaller capacitance may be required in order to avoid excessive a-f by-passing. However, if the capacitance is too small, r-f feedback may occur between plate and control grid, depending on the circuit layout, operating frequency, and power gain of the stage. A-f by-passing difficulties can usually be eliminated if the screen by-pass condenser is replaced by a series-tuned circuit to resonate at the operating frequency. The series-tuned circuit presents a high impedance to audio frequencies but a very low impedance to its resonant frequency.

The plate of the 813 shows no color at the maximum plate-dissipation rating for each class of service.

In order that the maximum ratings given under CHARACTERISTICS are not exceeded, changes in electrode voltages due to line-voltage fluctuation, load vari-

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com ation, and manufacturing variation of the associated apparatus must be determined. An average value of voltage for each electrode should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This may be done conveniently by means of a protective resistance of about 1000 ohms in series with the high-voltage supply lead, and a protective resistance of about 2000 ohms in series with the screen lead when a fixed screen-voltage supply is used.

THE RATED PLATE VOLTAGE OF THIS TUBE IS HIGH ENOUGH TO BE DANGEROUS TO THE USER. CARE SHOULD BE TAKEN DURING THE ADJUSTMENT OF CIRCUITS, ESPECIALLY WHEN EXPOSED CIR-CUIT PARTS ARE AT HIGH D-C PLATE POTENTIAL.

#### Operation

In Class B r-f amplifier service, the 813 is supplied with unmodulated d-c plate voltage and the grid is excited by r-f voltage modulated at audio frequency in ane of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. Driving power is usually negligible and never more Grid bias may be obtained than 2 watts. from a rectifier of good regulation, or from a cathode resistor, suitably bypassed for audio and radio frequencies.

In grid-modulated Class C telephone service, the 813 is supplied with unmodulated r-f grid excitation voltage and with a d-c grid bias which is modulated at audio frequencies. Grid bias should be obtained from an un-by-passed cathode resistor or from a fixed supply. The plate is supplied with unmodulated d-c voltage. The r-f driving power is usually negligible and never more than 2 watts. The audio power required in this service is very small, being sufficient only to meet the peak grid power requirement of the Class C amplifier on the positive crest of the input signal. The actual value is generally never more than 1 watt, dependent on circuit adjustments. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply.

The maximum plate-voltage ratings shown under CHARACTERISTICS for Class B r-f and Class C grid-modulated services may be used provided the plate current for each service is limited so that the respective maximum plate-input rating is not exceeded. Likewise, the maximum platecurrent values may be used provided the plate voltage is reduced so that the respective maximum plate-input rating is not exceeded.

In plate-modulated Class C r-f amplifier service, the 813 can be modulated 100 per cent. The screen voltage should preferably be obtained from a fixed supply. The screen voltage must be modulated simultaneously with the plate voltage so that the ratio of screen voltage to 'plate voltage remains constant. Modulation of a fixed screen-voltage supply can be accomplished either by connecting the screen lead to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. When the latter method is used, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. Grid bias may be obtained from a grid leak or from a combination of either grid leak and fixed supply, or grid leak and cathode resistor. The combination method is particularly desirable because distortion effects are minimized by bias-supply compensation. Grid bias for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In Class C r-f telegraph service, the 813 may be supplied with screen voltage by any of the methods shown under INSTALLA-TION. Grid bias may be obtained by any convenient method.

When more radio-frequency power output is required than can be obtained from a single 813; the push-pull or the parallel connection may be used. For example, two tubes connected in push-pull or parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of cancelling the even-order harmonics from the output and of simplifying the balancing of high-frequency circuits. If parasitic oscillations occur in the parallel or push-pull circuits, a noninductive resistance of 10 to 100 ohms connected in series with each grid lead as close to the socket terminal as possible, will often With either prevent the oscillations. connection, it is preferable to provide for a separate grid-bias or grid-excitation adjustment in order to balance the grid and plate current.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

4-44 (8000) Filing No. B8850

# GENERAL 🍪 ELECTRIC

### **General Installation and Operation of Phanotron Tubes**

#### **Description and Notes**

These tubes contain a partial atmosphere, usually the vapor pressure of a quantity of mercury, although it may sometimes be an inert gas, or a combination of gas and mercury.

Electrons emitted by the cathode collide with the gas or mercury atoms and produce ionization. Positive ions are attracted toward the cathode and neutralize the normally negative spacecharge around the cathode. This action results in a relatively low voltage drop between the anode and the cathode with consequent low loss in the tube.

#### Installation

#### MECHANICAL

Phanotrons should be mounted in sockets or supports of good quality with connections of sufficient current-carrying capacity, and should be operated only in a vertical position, as indicated by the outline drawing. A shockabsorbing mounting must be used if the tube is to be subjected to excessive vibration or shock. Since the tube becomes hot during continuous operation, any glass parts, including the seals, should not come in contact with any metallic body; nor be subjected to the drops or spray of any liquid.

#### ELECTRICAL

The cathode information is given in terms of the normal heating voltage and the approximate current. The cathode should be operated preferably from an a-c source. If alternating current is not available, a d-c source may be used. With each installation it is good practice, where economically justified, to provide a voltmeter connected directly across the filament terminals of the socket.

The cathode must assume operating temperature before electron current is

drawn. The delay may be accomplished either by manual or automatic control of the anode circuit. The automatic method is recommended where economically justified, because of the greater protection. The time required for the cathode to come up to normal operating temperature under conditions of good filament circuit regulation is included under Ørechnical Information. In the case of mercury-filled tubes, it is also necessary to bring the condensed-mercury temperature to the minimum operating value. Where the ambient temperature is low and/or where the cathode is quickheating, this may require a longer time than to bring the cathode to proper temperature.

When tubes with the midtapped filamentary type of cathode are used, the return leads from the anode circuit should be connected to the midtap. If the filament is not midtapped, these leads should be connected to the midtap of the filament transformer winding in the case of alternating current, or to the negative filament terminal in the case of a d-c supply. When an a-c supply is used, it is desirable both with the midtapped filamentary type of cathode and with the type where the filament is not midtapped, to use a filament winding with the filament voltage approximately 90 degrees out of phase with the anode voltage. However, the midtap of the filament transformer must not be used with tubes employing the indirectly heated type of cathode. In tubes of this type, the cathode is connected to one side of the filament, and only corresponding filament prongs should be connected when operating the filaments of two or more tubes in parallel.

An appreciable glow in the tube, when plate voltage is not applied, is an indication that the tube is exposed to radio frequency. Such a condition should be corrected; otherwise the tube life and performance will be adversely affected.

 $\emptyset$  Note: The ratings and characteristics of a particular tube are given under Technical Information on the Description and Rating Sheet for that tube.

#### THERMAL

When a mercury-vapor phanotron tube is first placed in operation, it is necessary to distribute the mercury properly before anode voltage is applied. This is usually accomplished by applying filament voltage for a period of timesufficient to distill the mercury into the cooling chamber of the tube. The location of the cooling chamber is indicated on the outline drawing by the words "controlling mercury temperature."

This time is generally less than one hour. This procedure need not be repeated unless, during subsequent handling or treatment the mercury is spattered or distilled on the elements or upper portion of the tube.

The design of equipment in which a mercury-vapor tube is used, should be such as to ensure the tube's operating within the condensed-mercury temperature limits over the range of ambient temperatures to be encountered.

When mercury-vapor tubes are subjected to low ambient temperatures or when it is desired to reduce the mercuryheating time (the time required to raise the mercury temperature to operating range), some form of heat-conserving enclosure should be used. This may be provided with thermostatically controlled shutters and/or heaters to bring the condensed-mercury temperature up within the operating range. When heaters are used, they should be located in such a position that the normal condensed-mercury region always remains the coolest portion of the tube enclosure.

When high ambient temperatures are encountered, it may be possible to utilize "chimneylike" enclosures to increase the natural convection cooling. In some cases the use of forced air may be necessary.

#### Operation

Careful handling and conservative operation will be amply repaid by longer and more uniform tube life. Three of the fundamental limits on the operation of phanotron tubes are the maximum peak inverse anode voltage, maximum instantaneous anode current, and the maximum average anode current.

#### CATHODE CIRCUIT

The cathode voltage, as indicated by the voltmeter, should not deviate from the ratedØ value by more than five per cent. Filament voltage should be set so that voltage fluctuations give an average value equal to the rated filament voltage. Too low filament voltage may result in very short life or perhaps immediate failure due to loss of emission. Too high voltage will shorten the life of the cathode somewhat.

During stand-by periods the filament should be operated at normal voltage.

#### ANODE CIRCUIT

The peak inverse voltage applied to the anode should never exceed the rated $\emptyset$ value. In the usual single-phase circuits, the peak inverse voltage, for sine-wave conditions may be taken as the total anode-transformer secondary voltage (rms value) multiplied by 1.4. The method for calculating the peak inverse voltage for some of the circuits more commonly used with phanotron tubes is shown in drawing "Circuits for hot-cathode mercury-vapor rectifier tubes." The relations between the peak inverse voltage, the direct voltage, and the rms value of alternating voltage depend largely upon the individual characteristics of the rectifier circuit and the power supply. Line surges, keying surges or any other transient or wave-form distortion may raise the actual peak voltage to a value which is higher than that calculated from the sine-wave voltages in the transformer. It should, therefore, be emphasized that the maximum rating of the tube refers to the actual inverse voltage and not to the calculated values. A cathode-ray oscilloscope or a spark gap connected across the tube is useful in determining the actual peak inverse voltage.

The instantaneous anode current experienced is affected largely by the characteristics of the output circuit,

Ø Note: The ratings and characteristics of a particular tube are given under Technical Information on the Description and Rating Sheet for that tube. including a filter if one is used. In the case of a circuit giving full-wave rectification, if the output circuit is highly inductive with respect to the tube, the instantaneous current may approach the d-c reading in the load circuit. If the output circuit is highly capacitive with respect to the tube, the instantaneous current in the tube may be many times the load current. Analysis of the individual circuit is necessary.

The average anode current must not exceed the rated value. With a steady load this may be read directly on a d-c meter. In the case of fluctuating loads, however, the reading should be averaged over a period not exceeding the time shown under ØTechnical Information.

The maximum surge current is the maximum instantaneous current that can pass through the tube under the most adverse conditions. This rating is intended to form a basis for set design, as it not only limits the currents which might flow during abnormal conditions, but also assures more reliable tube performance than would be obtained with circuits having too low a value of impedance. It does not mean that the tubes can be subjected to short circuit without the probability of a corresponding reduction in life and the possibility of failure. The duration of the surge current shall not be greater than the time shown on the Technical Information.

The voltage drop from anode to cathode is so low that it has little effect on the complete circuit except when the anode voltage used is low. This drop varies with the cathode voltage, with individual tubes, with life, and (in the case of mercury tubes) with the ambient temperature. The range givenø covers the maximum variations caused by all these factors as long as the tube is operated under the allowable conditions. Rapid changes are rarely encountered.

In installations where uninterrupted service is desired, the tube voltage drop should be checked at regular intervals. Since the tube drop is one criterion of tube condition, failure of tubes may be determined and even anticipated. The end of life will usually be preceded by an acceleration in the rate of increase at the test intervals. Tubes should be withdrawn from use at the beginning of this stage for maximum reliability of the installation.

NOTICE: GAS- OR VAPOR-FILLED TUBES, BE-CAUSE OF THEIR CONSTANT DROP PROPERTIES, REQUIRE SUFFICIENT PROTECTIVE RESISTANCE IN THE ANODE CIRCUIT TO LIMIT THE CUR-RENT TO THE RATED VALUE.





| CONTINUED FROM SHEET#2<br>USEFUL RATIOS |              |                            |                       |             |  |  |
|-----------------------------------------|--------------|----------------------------|-----------------------|-------------|--|--|
| FIG<br>NO                               | LOAD I (AVG) | Eavg                       | EINVERSE              | Iavg        |  |  |
| _1_                                     | 0.500        | 0.318 EMAX<br>0.450 ERMS   | EMAX<br>3.140 EAVG    | 0.636 I MAX |  |  |
| г                                       | 0.500        | 0.636 EMAX<br>0.900 ERMS   | EMAX<br>1.570EAVG     | 0.636 IMAX  |  |  |
| 3                                       | 0.333        | 0.827 EMAX<br>1.170 ERMS   | V3 EMAX<br>2.090EAVG  | 0.827 I MAX |  |  |
| 4                                       | 0.167        | 0.827EMAX<br>1.170 ERMS    | √3 EMAX<br>2.090 EAVG | 0.8271 MAX  |  |  |
| 5                                       | 0.333        | 1.650EMAX<br>2.340ERMS     | √3 EMAX<br>1.050 EAVG | 0.955 IMAX  |  |  |
| 6                                       | 0.333        | 1.650EMAX<br>2.340ERMS     | V3 EMAX<br>1.050 EAVG | 0.955 IMAX  |  |  |
| 7                                       | 0.333        | 0.955 E MAX<br>1.340 E RMS | EMAX<br>1.050 EAVG    | 0.955 I MAX |  |  |
| 8                                       | 0.250        | 0.900 EMAX<br>1.274 ERMS   | 2.220 EAVG            | 0.900 Imax  |  |  |
| 9                                       | 0.250        | 0.318 E MAX<br>0.450 E RMS | 3.140 EAVG            | 0.318 IMAX  |  |  |
| 10                                      | 0.167        | 0.955 EMAX<br>1.350 ERMS   | 2.090 EAVG            | 0.955 Imax  |  |  |

# CIRCUITS FOR RECTIFIER TUBES

#### Service Information

Complete instructions are packed with each shipment of tubes. Additional copies can be secured from the nearest office of the General Electric Company.

General Electric tubes are warranted to be of the kind and quality described in the manufacturers' specifications. Before leaving the factory, each tube is subjected to rigid tests and inspections. Performance will depend, to a large extent, upon the application, and upon the care with which the tubes are handled. In case of doubt as to proper operating conditions, information should be secured from the General Electric Office through which the purchase was made.

#### INTRODUCTION

This service sheet is furnished for the convenience of the customer in applying for adjustment if the quality of the tube does not meet the specification and warranty under which the tube was sold. In order that prompt action can be taken the information required in the service report form should be supplied in complete detail.

#### INITIAL TEST

To assure satisfactory operation, it is recommended that each tube be tested upon receipt by the customer, preferably in equipment of the same type and rating as that in which it is to be used. Such a procedure will assure that tubes damaged in transportation are not carried in stock. If spare tubes are stocked for long periods, a check test should be made at least every three months. The conditions of test and operation shall not be more severe than the conditions described in the manufacturers' specifications and instructions.

#### TRANSPORTATION CLAIMS

Should the package be received in a damaged condition, observance of the procedure described on the tag affixed to the container will enable the General Electric Company to assist the customer in filing a claim for tubes damaged in transit.

#### RETURN PROCEDURE

If any failure of the tube to comply with the specifications or warranties under which the tube was purchased occurs, the purchaser shall

- 1. Notify the nearest sales office of the General Electric Company. The manufacturer's office will advise the purchaser regarding the correct packing instructions and shipping procedure for returning tubes believed to be defective.
- 2. Tubes returned for credit adjustment should be packed as carefully as when originally received, for damage sustained in return shipment will make a thorough examination impossible.

If more than one tube is involved, the tubes should be identified by some permanent marking, such as a securely tied tag, which will enable them to be associated with this service report.

#### PERMISSION FOR DISMANTLING

In returning a vacuum tube for test and examination, the customer gives permission to the General Electric Company to break the glass bulb and to dissect the structure of the tube in case such procedure is considered necessary for complete examination.

#### Service Report Form - NEMA Standard

| Tube Type No.                                                              | Serial No<br>Date First Tested<br>Date Inoperative<br>Hours of Anode Operation |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Date Received                                                              |                                                                                |  |  |  |  |  |
| Date Placed in Service                                                     |                                                                                |  |  |  |  |  |
| Hours of Cathode Operation                                                 |                                                                                |  |  |  |  |  |
| If Stand-by Operation is Used Show Filament Voltage for Stand-by Condition |                                                                                |  |  |  |  |  |
| Nature of Defect                                                           |                                                                                |  |  |  |  |  |
| Describe any unusual phenomena which took                                  | place just previous to or at time of failure                                   |  |  |  |  |  |
|                                                                            |                                                                                |  |  |  |  |  |
| Code No. and maker of equipment in which                                   | tube was used                                                                  |  |  |  |  |  |
| Was tube used in experimental equipment o                                  | r experimental adjustment                                                      |  |  |  |  |  |
| Were all other circuit elements operating                                  | properly at time of tube failure                                               |  |  |  |  |  |
|                                                                            | PURCHASER                                                                      |  |  |  |  |  |

ADDRESS

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. 10-42(25M) Filing No. 8850



# GENERAL C ELECTRIC

# General Installation and Operation of Transmitting Tubes

#### Installation

#### MECHANICAL

Mountings must be of good quality and should be so installed as to minimize danger from impact. If the set is subject to vibration, a shock-absorbing suspension must be employed.

#### COOLING

All apparatus should be arranged to allow free circulation of air around the pliotron. The bulb becomes very hot during operation and, therefore, should neither come in contact with any metallic object nor be subjected to drops or spray of liquid.

Sets using more than one tube should provide adequate spacing between tubes so that adjacent portions of the bulbs do not operate appreciably hotter than the other sections.

#### ELECTRICAL

To avoid danger of corona discharge, all wires and connections should be made to allow several inches of free space around the pliotron. For tubes using a metal base, the metal shell must not be connected to any part of the circuit.

The filament should be operated preferably from an a-c source, although a d-c supply may be used. The filament voltmeter should be connected to indicate the voltage <u>at the filament terminals</u>. The filament supply should be designed to allow operation at rated filament voltage. The filament transformer shall have good regulation and should be designed for at least thirty per cent above rated filament wattage.

Thoriated-tungsten filaments should be operated at eighty per cent of normal filament voltage during stand-by periods of less than two hours and shut down entirely for longer periods. However, for small tubes of less than 250 watts plate dissipation rating the filament voltage may be removed for stand-by periods greater than 15 minutes. There should be no reduction of filament voltage for periods of less than five minutes. The filament voltage may be reduced to eighty per cent during periods greater than five minutes if desired.

Oxide-coated filaments or cathode heaters should be operated at normal filament voltage during stand-by periods. If the stand-by periods exceed two hours the filament current may be shut off.

Overheating by severe overload may decrease filament emission. Unless the overload has liberated a large amount of gas, the activity of the filament usually can be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by increasing the filament voltage to 20 per cent above the tnormal value (not higher) for a few minutes.

The <u>grid-circuit</u> and <u>plate-circuit</u> return leads should be connected to the center tap of the filament-transformer secondary. When d-c filament excitation is used, the return leads from the grid and plate circuits should be connected to the negative filament terminal.

The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and current.

An ammeter in the plate circuit of each tube should be connected so that the direct-plate current may be checked regularly.

The plate circuit should be provided with a protective device such as a fuse or relay in order to prevent overheating caused by improper circuit adjustments or overloading. This device should remove the plate voltage instantly if the directplate current reaches a value 50 per cent above fnormal.

In rating pliotrons, certain values are given as maximum; that is, the values

tNote: The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com beyond which it is unsafe to go from the viewpoint of life and performance. In order not to exceed the †maximum ratings, changes in plate and filament voltage caused by line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. Then, an average value of plate voltage should be chosen so that under the usual operating conditions the maximum ratings will not be exceeded.

IN TRYING OUT A NEW CIRCUIT OR WHEN ADJUSTMENTS ARE BEING MADE, THE PLATE VOLTAGE SHOULD BE REDUCED IN ORDER TO PRE-VENT DAMAGE TO THE PLIOTRON OR ASSOCIATED APPARATUS IN CASE THE ADJUSTMENTS ARE IN-CORRECT.

#### Operation

#### GENERAL

Maximum ratings and typical operating conditions for each recommended class of service are given on the Description and Rating Sheet covering the individual type of pliotron. The typical values given must not be considered as ratings, because the tube may be used at any suitable conditions within the maximum ratings.

CLASS A AUDIO-FREQUENCY AMPLIFIER OR MOD-ULATOR.

Grid bias for this type of service may be obtained from a separate voltage source or by means of a self-biasing resistor shunted by a filter network to avoid degenerative effects at the low audio-frequencies. When several tubes are operated in parallel, it is necessary to make provision for individual adjustment of grid bias to insure that the plate dissipation of any tube does not exceed the tmaximum value. This may be accomplished by means of a tapped "C" battery or, if self bias is used, by means of a variable cathode resistor for each tube. When the self-biasing method is used, separate filament supplies are necessary for each tube.

An output device such as a choke or transformer should be used to transfer power efficiently from the pliotron to the load.

CLASS E AUDIO-FREQUENCY POWER AMPLIFIER OR MODULATOR

In this type of service two tubes are used in a "balanced" circuit, each tube

conducting only half the time. The plate loss becomes maximum at a signal slightly less than 1, depending on the circuit conditions, and therefore the plate dissipation must be limited so that at this value of sustained signal, the plate loss will not exceed the maximum rating.

The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should be designed also to handle the required input power for maximum signal conditions.

The output transformer should be designed so that the resistance presented by the load is reflected as the proper plateto-plate loading in the Class B stage. For example, if the load is a modulated Class C amplifier operating at 2000 volts and 500 milliamperes, the ratio of the output transformer to provide a plate-toplate loading of 10,000 ohms would be 10000 : 4000, or 1.58 to 1, step-down. The transformer should be designed with a core large enough to avoid saturation effects, which would impair the quality of the output. If the secondary is to carry the direct plate current of the modulated amplifier, the core should be made larger and should include an air gap.

#### CLASS B RADIO-FREQUENCY AMPLIFIER

In Class B radio-frequency service, the plate is supplied with unmodulated direct voltage, and the grid is excited by modulated r-f voltage. It is important to note that in this service the plate dissipation is greatest when the carrier is unmodulated. Therefore, the circuit should be adjusted so that, without modulation, the plate loss will not exceed the tmaximum rating.

Grid bias for Class B a-f or r-f service should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply such as a grid leak.

CLASS C RADIO-FREQUENCY POWER AMPLIFIER --PLATE MODULATED

In this type of service, the plate supply voltage is modulated so that the tube output is modulated radio frequency. Assuming a value, P, of plate input to be modulated, the amount of audio-frequency

**†Note:** The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.

power to be supplied is equal to  $\underline{m}^{2}p$ , where m is the modulation factor: 2

The maximum ratings and typical operating conditions given in the <sup>†</sup>Technical Information are such that a modulation factor up to 1.0 may be used. When a lower value of modulation is used, the plate dissipation allowed may be increased, but should be limited so that with the modulation sustained at its peak value, m, the plate loss will not exceed a value  $\frac{3}{2+m^2}$ times the plate dissipation  $2+m^2$ rating.

Grid bias for this service may be obtained from a grid leak or from a combination of grid leak and generator, rectifier, or cathode-bias resistor, suitably by-passed for audio and radio frequencies. The combination method is desirable because distortion effects may be minimized.

CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR

In telegraph service, the plate input power is keyed, i.e., is on and off alternately in accordance with the characters of some code. During the "key-down" periods, the tube functions as an unmodulated radio-frequency power amplifier. The tube may be used also as an amplifier or oscillator without keying. In both types of service, the ratings given are for "keydown" conditions.

Certain methods of modulation may be applied to this class of service provided the modulation is essentially negative and the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

Grid bias for Class C service may be obtained from a grid leak, from a battery, from a rectifier of good regulation, or from a self-biasing resistor by-passed with a suitable capacitor. With the gridleak method, the grid excitation must not be removed without also removing the plate voltage. Grid-bias values are not particularly critical, and correct circuit adjustment may be obtained with widely different values.

Note:, The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

# GENERAL BELECTRIC

# **General Installation and Operation of Kenotron Tubes**

#### Installation

#### MECHANICAL

The handling of a kenotron in transportation and storage requires great care since the tube may be permanently damaged if subjected to shock. Each tube is suspended within its shipping carton so that it will not come in contact with the sides of the carton during shipment. The tube should be stored in the carton and should be protected from moisture and extreme temperature changes. Furthermore, while the tube is being handled it should be kept in a vertical position with the cathode end down. Under no circumstances should crated tubes be piled on top of one another.

The kenotron should be installed in a vertical position with the cathode base down.

In installations where a nonrigid anode connection is used, reasonable flexibility must be provided to prevent placing a strain on the cathode base. Since the bulb becomes hot during continuous operation, it should not come in contact with any metallic body, nor be subjected to the drops or spray of any liquid.

The accumulation of dust and metallic particles on the outer surface of the glass walls will increase the leakage over this surface. As this may result in tube failure from arc-over, periodic cleaning of these surfaces should be maintained.

When a kenotron is operated at voltages above 75 kv peak inverse, harmful x-rays may be generated. Adequate protection against these x-rays should be provided.

#### COOLING

Free circulation of cool air around the glass bulb should be maintained. Hightemperature air from other apparatus should be prevented from circulating around the tubes. If desired the tubes may be immersed in a tank of oil with the transformers.

#### -----

\*Note: The ratings and characteristics of a particular tube are given under Technical Information on the Description and Rating Sheet for that tube.

#### ELECTRICAL

Filament power should be supplied from a filament lighting transformer insulated for the proper voltage. This transformer should be provided with a secondary midtap for the plate circuit return lead. The filament excitation supply must be provided with suitable resistors or other regulating devices to apply the power to the filament gradually and to adjust it accurately during operation. The filament voltage should be measured directly at the filament terminals.

The high initial rush of current through the filament when the switch is first closed should be limited by the use of some form of filament starter. The proper use of the filament regulating devices will prevent this initial rush of current from destroying the filament. In any case, the current through the filament should never, even instantaneously, exceed twice the \*rated value.

When the apparatus in which the tube is used is to be idle for periods not exceeding two hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately 80 per cent of the \*rated value during "standbys." Where stand-by periods exceed two hours the filament voltage may be removed.

The plate circuit should be provided with a time-delay relay which will prevent application of plate voltage until the filament has reached normal operating temperature.

Automatic protective devices should be installed to prevent over-plate-voltage, over-plate-current, or under-filament-voltage conditions.

In the case of multi-phase installations, the plate transformer is usually designed for rectifier use. In the case of a double Y rectifier, the use of an inter-phase transformer is recommended. The cathode base should not be connected to ground or to any other part of the circuit.

The installation of all wires and connections should be made so that they do not lie on or close to the glass of the kenotron. An air space of approximately the length of the tube should be main-



| -   |                                   |                                 |                            |            |  |  |  |
|-----|-----------------------------------|---------------------------------|----------------------------|------------|--|--|--|
| Fig | Circuit                           | E average                       | E inverse                  | I average  |  |  |  |
| 1   | Single-phase, Full-wave           | 0.318 Emax 0.450 Erms           | Emax 3.14 Eavg             | 0.636/Imax |  |  |  |
| 2   | Single-phase, Full-wave           | 0.636 Emax 0.900 Erms           | Emax 1.57 Eavg             | 0.636 Imax |  |  |  |
| 3   | Three-phase, Half-wave            | 0.827 Emax 1.170 Erms           | $\sqrt{3}$ Emax 2.09 Eavg  | 0.827 Imax |  |  |  |
| 4   | Three-phase,<br>Double-Y Parallel | 0.827 Emax 1.170 Erms           | 1.732 Emax 2.09 Eavg       | 1.91 Imax  |  |  |  |
| 5   | Three-phase, Full-wave            | 1.65 Emax 2.34 Erms             | V3 Emax 1.05 Eavg          | 0.955 Imax |  |  |  |
| 6   | Voltage Doubler                   | 2.83 Erms<br>No Load Conditions | Eavg<br>No Load Conditions |            |  |  |  |

#### Note for Fig 6:

Output voltage depends on load and circuit regulation. The circuit must be designed so that the tube ratings are not exceeded. Particularly, values of C and R must be chosen to limit charging current so that peak current rating of tube will not be exceeded.

tained between the bulb and any metallic body during operation. Otherwise, corona discharge may develop and result in puncture of the glass bulb.

#### Operation

Ordinary care in handling and provision for the necessary operating conditions peculiar to the kenotron will minimize accidental damage to the tube.

The maximum values given in the \*rating of kenotrons are the values beyond which it is unsafe to operate, if the maximum life and performance are desired. For example, the maximum operating plate voltage can be obtained from the Technical Information and the amount of voltage fluctuation, due to line, load, and manufacturing variation in the apparatus must be determined or estimated. An average value of plate voltage must be used which, under normal operating variations, does not exceed the maximum rated value.

With regard to power, the ratings given on the Technical Information prescribe two limiting operating conditions. The first is a maximum peak inverse voltage which should not exceed a certain safe value determined by the insulation between electrodes of the tube. The maximum peak inverse voltage is the highest voltage that the tube will insulate on the half cycle when no current is passing through the tube. As any and all of the following factors - line surges, circuit capacitance, wave form distortion, and the maximum peak voltage of the applied alternating voltage - may increase this inverse voltage to a value higher than the rated maximum peak voltage, the kenotron should never be used at the maximum rated voltages unless measurements, either by oscillograph or sphere gap, have indicated that at no time does the peak voltage across the tube exceed this value.

The second limiting value is the power dissipation of the plate which is determined by the d-c load current almost regardless of the voltage across the load. The maximum peak plate current is the greatest instantaneous current that may be drawn from a kenotron on the half cycle during which the plate of the tube is positive. As the design of the circuit, especially the amount of capacitance in the circuit, is a major factor in determining the amount of current available in a given rectifier, oscillograph measurements of this current should be made if any doubt exists as to the magnitude. If the kenotron is to be operated at full \*peak current rating, it will be necessary to maintain exactly the rated filament voltage. If the peak current to be drawn is less than the full rated value, the allowable filament voltage regulation increases as the value of the peak current decreases.

The following tabulation shows the reduction of the maximum peak current with reduced filament voltage:

| Filament<br>Voltage<br>% of Rated | Maximum<br>Peak Current<br>% of Rated |  |
|-----------------------------------|---------------------------------------|--|
| 100                               | 100                                   |  |
| 95                                | 65                                    |  |
| 90                                | 40                                    |  |
| 85                                | 25                                    |  |
| 80                                | 10                                    |  |

Excessive anode temperature is an indication of abnormal voltage drop in the tube and is usually caused by low filament temperature. Filament voltage greater than the rated value, while increasing the maximum peak current available, will result in decreased tube life.

The regulation of the filament supply voltage should be such that the minimum filament voltage will not be less than that recommended in the tabulation for the peak current demand.

The filament should be operated at constant voltage rather than at constant current and should always be allowed to reach normal operating temperature before the plate voltage is applied.

Six basic circuits in which the kenotron may be used are shown schematically on Fig. 1. The values given are ideal conditions which usually cannot be obtained in actual installations because of poor regulation and other abnormal supply line conditions. Therefore, these factors must be considered and subtracted from the supply voltage to the tubes in order that the maximum voltage rating is not exceeded.

In parallel operation the filaments of all tubes must be supplied from a common source and the voltage of this source must be adjusted to the rated value of the individual tube when all tubes are lighted.

In series circuits, separate filament transformers must be provided. Also provision must be made for equalizing the voltage drop of each tube in the series.

When any kenotron, except the FP-85, is first placed in operation the following procedure should be observed. The tube should be operated without plate voltage for five minutes at rated filament voltage. After this initial preheating schedule, the plate voltage can be applied. Start with not more than one-half the usual operating voltage and then carefully increase it in steps over a period of approximately 15 minutes to the desired value. The tube should then be operated under the normal load conditions for a period of approximately 15 minutes or more. If the plate voltage is varied by taps on the primary, the plate-circuit relay should be open when the taps are changed in order to avoid dangerous surges. It is recommended that every three months spare tubes be given the preheating and initial operation schedule as discussed above. This will insure that only good tubes are carried in stock.



7-42 (4M) Filing No. 8850



# **Transmitting Tube GL-1623 - Installation and Operation**

#### INSTALLATION

The <u>base</u> of the 1623 fits the standard 4-contact socket such as the Type UR-542A. The socket should be installed to hold the tube in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the filament base pins should be placed one vertically above the other so that the filament will be in a vertical plane (on edge). The plate lead is brought out to a cap at the top of the tube.

The <u>bulb</u> becomes very hot during continuous operation of the tube. Care should be taken, therefore, that the bulb is not subjected to the drops or spray of liquid.

The <u>filament</u> of the 1623 is of the thoriated-tungsten type. The filament voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. When the apparatus in which the tube is used is idle for short periods of time, the filament should be maintained at its rated voltage during the "stand-bys."

The <u>plate</u> shows no color at the maximum plate-dissipation rating for each class of service.

Overheating of the 1623 by severe overload may decrease filament emission. Filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. The process may be accelerated by raising the filament voltage to 7.5 volts (not higher) for a few minutes. The positive high-voltage supply lead of the 1623 should be provided with a protective device, such as a high-voltage fuse, to prevent the tube from drawing excessive plate current. This device should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal.

In order that the maximum ratings given under CHARACTERISTICS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate voltage. This may be done conveniently by means of a resistance of about 4000 ohms in series with the high-voltage plate lead. The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c plate potential.

#### OPERATION

In Class B modulator or a-f amplifier service, two 1623's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B a-f stage. Grid bias may be obtained from a battery or other d-c source of good regulation. It should not be obtained from a highresistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation.

In <u>Class B r-f service</u>, the 1623 is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. The plate dissipation is greatest when the carrier is unmodulated. Grid bias may be obtained from a battery, from a rectifier

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com of good regulation, or from a cathode resistor, suitably by-passed for audio and radio frequencies. The maximum plate voltage values may be used provided the plate current is limited so that the maximum plate-input rating is not exceeded. Likewise, the maximum plate-current values may be used provided the plate voltage is limited so that the maximum plate-input rating is not exceeded.

In plate-modulated Class C r-f service, the 1623 may be supplied with grid bias from a grid leak, or from a suitable combination of either grid leak and fixed supply, or from a grid leak and cathode-bias resistor. The cathode resistor should be suitably by-passed for audio and radio frequencies. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion effects by biassupply compensation. Grid-bias voltage is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In <u>Class C r-f telegraph service</u>, the 1623 may be supplied with grid bias by any convenient method.

The 1623 can be operated at maximum ratings in all classes of service at frequencies as high as 60 megacycles.

\* See Description and Rating Sheet.

The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under CHARACTERISTICS). The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used up to 115 mc for the various classes of service.

When more radio-frequency power output is required than can be obtained from a single 1623, the push-pull or the parallel connection may be used. For example, two tubes connected in push-pull or parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of cancelling the even-order harmonics from the output and of simplifying the balancing of high-frequency circuits. If parasitic oscillations occur in the parallel or push-pull circuits, a noninductive resistance of 10 to 100 ohms connected in series with each grid lead as close to the socket terminal as possible, will often prevent the oscillations.

#### GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

6-40 (2M) Filing No. B8850

# GENERAL 🍪 ELECTRIC

### **Transmitting Tube GL-812 - - Installation and Operation**

#### Installation

The base of the 812 fits the standard 4-contact socket such as the Type UR-542A. The socket should be installed to hold the tube in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the socket should be mounted with the filament-pin openings one vertically above the other so that the plate will be in a vertical plane (on edge). The plate lead of the tube is connected to a metal cap at the top of the bulb.

The <u>bulb</u> becomes very hot during continuous operation. Therefore, free circulation of air around the tube should be provided.

The <u>filament</u> of the 812 is of the thoriated-tungsten type. The filament voltage should not vary more than  $\pm 5$  per cent from the rated value.

When the tube is used in intermittent service, the filament voltage may be removed for stand-by periods greater than fifteen minutes. There should be no reduction of filament voltage for periods of less than five minutes. The filament voltage may be reduced to eighty per cent during periods greater than five minutes if desired.

The <u>plate</u> of the 812 shows a dull red color at its maximum plate-dissipation ratings of 50 to 55 watts; it shows no color at a plate dissipation rating of 40 watts.

Overheating of the 812 by severe overload may decrease its filament emission. The filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by raising the filament voltage to 7.5 volts (not higher) for a few minutes. The positive high-voltage supply lead should be provided with a protective device, such as a high-voltage fuse. This device should instantly remove the plate when the d-c plate current voltage reaches a value 50 per cent greater than normal.

In order that the maximum ratings given under CHARACTERISTICS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltage will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 10,000 ohms in series with the plate lead during such adjustments. <u>The rated plate</u> voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at the high d-c plate potential.

#### Operation

In Class B modulator or audio-frequency service, two 812's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B a-f stage. Grid bias should be obtained from a battery or other d-c source of good regulation.

In <u>Class B r-f service</u>, the 812 maybe supplied with bias from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably bypassed for both audio and radio frequencies.

In plate-modulated Class C r-f service, the 812 may be supplied with grid bias from a grid leak, or from a combination of grid leak and fixed supply, or grid leak and cathode resistor. The cathode resistor should be suitably by-passed for both audio frequency and radio frequency. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

In <u>Class C r-f telegraph</u> service, the 812 may be supplied with grid bias by any convenient method. When the tube is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. For example, if the 812 is operated at the maximum rated plate voltage of 1500 volts (ICAS), a fixed bias of at least -45 volts should be used.

In self-rectifying oscillator service, the 812 is supplied with a-c plate voltage. Grid bias may be obtained by any convenient method; a grid resistor is commonly used because of its convenience and because the bias is automatically adjusted as the load on the circuit varies.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 2-42 (3M) Filing No. B8850 Supersedes GEH-1108

# GENERAL & ELECTRIC

### Transmitting Tube GL-811 - - Installation and Operation

#### Installation

The base of the 811 fits a standard four-contact socket such as the Type UR-542A. The socket should be installed to hold the tube in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the tube should be mounted with the plate in a vertical plane (on edge). The plate lead of the tube is connected to a cap at the top of the bulb.

The bulb becomes very hot during continuous operation so that free circulation of air around the tube should be provided.

The filament of the 811 is of the thoriated-tungsten type. The filament voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. The filament voltage may be removed for stand-by periods greater than fifteen minutes. There should be no reduction of filament voltage for periods of less than five minutes. Filament voltage may be reduced to eighty per cent during periods greater than five minutes if desired. The filament of the 811 should be operated at constant voltage rather than constant current and should be allowed to reach normal operating temperature before other voltages are applied.

The plate of the 811 shows a dull red color at its maximum plate-dissipation ratings of 50 to 55 watts; it shows no color at a plate dissipation of 40 watts.

Overheating of the 811 by severe overload may decrease its filament emission. The filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or This process may be accelerated grid. by raising the filament voltage to 7.5 volts (not higher) for a few minutes. The plate circuit should be provided with a protective device, such as a high-voltage fuse. This device should instantly remove the plate voltage when the d-c plate current reaches a value of 50 per cent greater than normal.

In order that the maximum ratings will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation load variation, and manufacturing variation of the associated apparatus must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 1000 ohms in series with the plate lead during such adjustments. The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c plate potential.

#### Operation

In Class B modulator or audio-frequency service, two 811's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B a-f stage. Grid bias should be obtained from a battery or other d-c source of good regulation.

In Class B r-f service, the 811 may be supplied with bias from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably bypassed for both audio and radio frequencies.

In plate-modulated Class C r-f service, the 811 may be supplied with grid bias from a grid leak, or from a combination of grid leak and fixed supply, or grid leak and cathode resistor. The cathode resistor should be suitably by-passed for both audio-frequency and radio-frequency. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

In Class C r-f telegraph service, the 811 may be supplied with grid bias by any convenient method. Grid-leak bias, however, is particularly suitable for this tube. Even when the grid excitation is removed under maximum plate voltage conditions, the zero-bias plate current remains at a safe value. Therefore, it is practical to use the 811 with grid-leak bias alone in the final amplifier or in a preceding stage of a transmitter designed for break-in operation and oscillator keying.

The 811 can be operated at maximum ratings in all classes of service at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under Technical Information). The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used up to 100 mc for the various services.

\* See Description and Rating Sheet

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

PRINTEO IN U.S.A

# GENERAL 🍘 ELECTRIC

### **Transmitting Tube GL-810 - - Installation and Operation**

#### Installation

The <u>base</u> of the 810 fits the standard transmitting, 4-contact socket such as the Type UT-541A. The socket should be installed so that the tube will operate in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the tube should be mounted with the plate in a vertical plane (on edge).

The <u>bulb</u> becomes very hot during continuous operation of the tube so that free circulation of air around the tube should be provided.

The filament of the 810 is of the thoriated-tungsten type. The filament voltage should not vary more than  $\pm$  five per cent from the rated value; otherwise, loss of filament emission may result. It is recommended that, in intermittent service where the average number of daily transmissions is greater than 100, the filament be maintained at 80 per cent of normal voltage during standby periods. If the number of transmissions is less than 100 per day, the filament power should be removed during standby periods.

Overheating of the 810 by severe overload may decrease its filament emission. Filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more without voltage on the plate or grid. The process may be accelerated by raising the voltage to 12 volts (not higher) for a few minutes. The plate circuit should be provided with a protective device such as a high-voltage fuse. This device should instantly remove the plate voltage when the d-c plate current reaches a value 50 per cent greater than normal.

The <u>plate</u> of the 810 shows only a barely perceptible red color at the maximum plate-dissipation rating for each service.

In order that the maximum ratings given under CHARACTERISTICS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate voltage. This may be done conveniently by means of a resistance of about 4000 ohms connected in series with the high-voltage plate lead. The rated plate voltage of this tube is high enough to be dangerous to the user. Great care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c plate potential.

#### Operation

In Class B modulator or a-f service, the 810 input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B stage. Grid bias should be obtained from a battery or other d-c source of good regulation.

In <u>Class B r-f service</u>, the 810 may be supplied with bias from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably bypassed for audio and radio frequencies.

In <u>plate-modulated Class C r-f ser-</u><u>vice</u>, the 810 may be supplied with grid bias from a grid leak, or from a combination of grid leak and fixed supply, or grid leak and cathode resistor. The cathode resistor should be suitably bypassed for both audio and radio frequencies. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by biassupply compensation. In <u>Class C r-f telegraph service</u>, the 810 may be supplied with grid bias by any convenient method. When the 810 is used in the final amplifier or a preceding stage of a transmitter designed for 'break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. With plate voltage of 2250 volts, a fixed bias of at least -30 volts should be used.

If parasitic oscillations occur in the parallel or push-pull circuits, a noninductive resistance of 10 to 100 ohms connected in series with each grid lead as close to the grid terminal as possible, will often prevent oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

9-42 (4M) Filing No. 8850

# GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-806 - - Installation and Operation

#### Installation

The base pins of the 806 fit the standard transmitting four-contact socket, such as the Type UT-541. The socket should be installed so that the tube will operate in a vertical position with the base down. If the tube is subjected to vibration or shock, a shock-absorbing suspension must be employed. Because of the relatively heavy filament current taken by this tube, the socket should make firm, large-surface contact with the filament-base pins. Heavy, well-soldered leads should be used for the filament-circuit wiring.

The bulb becomes very hot during continuous operation so that free circulation of air should be provided. Forced cooling is required for continuous key-down conditions in Class C telegraph service and is recommended for all classes of service at frequencies of 30 mc or higher. Forced cooling may be accomplished by means of an electric fan which directs air against the middle and upper sections of the bulb. Care should be taken that the bulb does not come in contact with any metallic object nor be subjected to the drops or spray of liquid. The installation of all wires and connections should be made so that they will not be close to or touch the bulb. This precaution is necessary in order to avoid puncture of the glass due to peak voltage effects.

The filament of the 806 is of the thoriated-tungsten type. It may be operated either from an a-c or a d-c source. Except where a d-c source is necessary to avoid hum, an a-c filament supply is generally used because of its convenience. The characteristics shown under Technical Information are based on the filament operated on alternating current. When direct current is used on the filament, the circuit returns should be connected to the negative filament terminal. A voltmeter should be connected permanently across the filament terminals to provide a ready check of the filament voltage. This voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. The filament voltage may be removed for stand-by periods greater than fifteen minutes. There should be no reduction of filament voltage for periods of less than five minutes. Filament voltage may be reduced to eighty per cent during periods greater than five minutes if desired.

The plate dissipation of the 806 (the difference between plate input and power output) should never exceed the values given under Technical Information. The maximum plate-dissipation values are indicated by an orange-red color on the plate. It is normal for the plate to show some color, even at low loads.

Overheating of the 806 by severe overload may decrease filament emission. Unless the overload has liberated a large amount of gas, the activity of the filament can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by raising the filament voltage to 6 volts (not higher) for a few minutes. In order to prevent overheating due to improper circuit adjustments, or to overloading, the positive plate supply lead should be provided with a protective device such as a fuse. This device should instantly remove the plate voltage when the d-c plate current reaches a value 50 per cent greater than normal.

Heavy leads and conductors together with suitable insulation should be used in all parts of the r-f plate tank circuit so that the losses, due to the r-f voltages and currents, may be kept at a minimum. Since proper circuit design becomes very important at the higher frequencies, it is essential that short, heavy leads and circuit returns be used in order to minimize lead inductance and losses.

In order that the maximum ratings given under Technical Information will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 10,000 ohms in series with the high-voltage plate lead during such adjustments. Suitable meters should be provided for measuring tube voltages and currents as well as for making transmitter adjustments. In modulated service, the use of a cathode-ray oscillograph also is recommended in the making of final adjustments for optimum performance. Under no conditions should the maximum values given under Technical Information be exceeded.

The rated plate voltage of this tube is high enough to be dangerous to the user. Great care should be taken during the adjustment of circuits, especially those in which the exposed circuit parts are at the high d-c plate potential.

#### Operation

As a Class B modulator or audio-frequency amplifier, two 806's are used in a balanced circuit, each tube amplifying only half the time. The d-c plate current should never exceed 200 milliamperes per tube. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as a plate-to-plate load of 21,500 ohms in the Class B a-f stage for the 3000-volt condition. If an output transformer efficiency of 90 per cent is assumed, two 806's operated under conditions shown for a 3000-volt plate supply, are capable of modulating 100 per cent an input of approximately 1185 watts to a Class C r-f power amplifier. Since two 806's will modulate 1185 watts, a convenient Class C amplifier would be one operating at 2500 volts and 475 milliamperes. These conditions represent a resistance of approximately 5275 ohms. The ratio of the output transformer is then 21,500 ÷ 5275, or 2 to 1, step-down. The transformer should be designed with a core sufficiently large to avoid saturation effects which would impair the quality of the output. If the secondary is to carry the d-c plate current of the modulated amplifier, the core should be made larger and include an air gap to prevent saturation caused by the d-c plate current. Grid bias for Class B service should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation.

As a Class B radio-frequency amplifier, the plate of the 806 is supplied with unmodulated d-c voltage and the grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. In this service the plate dissipation is greatest when the carrier is unmodulated. Under these conditions, the plate dissipation should not exceed 150 watts for unmodulated carrier conditions. Grid bias for Class B r-f service should be obtained in the same manner as for Class B a-f service.

As a plate-modulated Class C radiofrequency amplifier, the 806 should be used as shown under Technical Information. Grid bias for this service may be obtained from a grid leak of about 15,000 ohms (50-watt size), or from a suitable combination of either grid leak and fixed supply, or grid leak and cathode-bias resistor. The cathode-bias resistor should be suitably by-passed for audio and radio frequencies. The combination-bias methods are particularly desirable because distortion effects are minimized by biassupply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

As a Class C radio-frequency amplifier and oscillator for telegraph service, the 806 may be used as shown under Technical Information. Grid bias for this service may be obtained from a grid leak of approximately 20,000 ohms, from a battery, from a rectifier, or from a cathode-bias resistor (preferably variable) suitably by-passed for radio frequencies. The cathode-bias method is advantageous due to the fact that the grid bias is automatically regulated in direct proportion to the sum of the plate and grid current and that there is little chance of the plate current becoming dangerously high, even if the r-f grid excitation is removed. The grid-leak-bias method has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. Special care must be observed with the use of the latter system because the accidental removal of the excitation will cause the grid bias to fall to zero and the plate current to rise to an excessive value. The use of a protective device designed to open the plate circuit on excessive rises of plate current will minimize the danger of overload (see INSTALLATION). Since the gridbias voltage for Class C service is not particularly critical, correct adjustment may be obtained with widely different values.

The maximum plate voltage values shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS for Class B services may be used provided the plate current for each service is limited so that the respective maximum plate input rating is not exceeded. In like manner, the maximum plate current values may be used provided the plate voltage for each service is limited so that the respective maximum plate input rating is not exceeded.

The d-c grid current will vary with individual tubes. Under no condition of operation should the maximum values under MAXIMUM RATINGS be exceeded.

The 806 may be operated at maximum ratings in all classes of service at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings remain the same as shown under TECHNICAL INFORMATION). The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used at 30, 50, and 100 mc for any class of service. At these frequencies it is recommended that forced cooling be used to provide adequate ventilation (see INSTAL-LATION).

With the grid connected to the plate through the shortest possible connection, the resonant frequency of the grid-plate circuit is approximately 197 megacycles.

If more radio-frequency power output is required than can be obtained from a single 806, the push-pull or the parallel connection may be used. For example, two tubes connected in push-pull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of balancing high-frequency circuits to ground and of cancelling the even-order harmonics from the output. When two or more 806's are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with the grid lead of each tube, as close to the tube as possible, to prevent parasitic oscillations.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

8-43 (4M) Filing No **B885**0

www.SteamPoweredRadio.Com

# GENERAL 🚱 ELECTRIC

### **Transmitting Tube GL-809 - - Installation and Operation**

#### INSTALLATION

The <u>base</u> of the 809 fits the standard 4-contact socket such as the Type UR-542A. The socket should be installed to hold the tube in a vertical position with the base down. If it is necessary to place the tube in a horizontal position, the socket should be mounted with the filament-pin openings one vertically above the other so that the plate will be in a vertical plane (on edge). The plate lead of the tube is connected to a metal cap at the top of the bulb.

The <u>bulb</u> becomes very hot during continuous operation. Free circulation of air, therefore, should be provided. The installation of all wires and connections should be made so that they will not be close to or touch the bulb in order to avoid puncture of the glass.

The <u>filament</u> voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. When the apparatus in which the tube is used is idle for short periods, the filament should be maintained at its rated voltage during the "stand-bys."

The <u>plate</u> of the 809 shows no color at the maximum plate-dissipation rating for each service.

Overheating of the 809 by severe overload may decrease its filament emis-The filament activity can somesion. times be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by raising the filament voltage to 7.5 volts (not higher) for a few minutes. The positive high-voltage supply lead should be provided with a protective device, such as a high-voltage fuse. This device should instantly remove the plate voltage when the d-c plate current reaches a value of 50 per cent greater than normal.

In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL

OPERATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltage will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 3000 ohms in series with the plate lead during such adjustments.

The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c plate potential.

#### OPERATION

In Class B modulator or audio-frequency service, two 809's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the recommended plate-to-plate load in the Class B a-f stage. Grid bias should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a highresistance supply such as a grid leak or a cathode-bias resistor. When the 809 is operated at a plate voltage of 500 volts or less, the tube may be operated with zero bias.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com In <u>Class B r-f service</u>, the 809 may be used as shown under CHARACTERIS-TICS. The plate is supplied with unmodulated d-c voltage and the grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. The plate dissipation is greatest when the carrier is unmodulated. Grid bias for Class B r-f service may be obtained from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably by-passed for audio and radio frequencies.

In plate-modulated Class C r-f service, the 809 may be supplied with grid bias from a grid leak, or from a suitable combination of either grid leak and fixed supply, or a grid leak and cathode resistor. The cathode resistor should be suitably by-passed for audio and radio frequencies. The combinationbias method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also minimizes distortion effects by bias-supply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In <u>Class C r-f telegraph service</u>, the 809 may be supplied with grid bias by any convenient method.

The 809 may be operated at maximum ratings in all classes of service at frequencies as high as 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under CHARACTERISTICS). The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used up to 100 mc.

When more r-f power output is required than can be obtained from a single 809, the push-pull or the parallel connection may be used. For example, two tubes connected in push-pull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation volt age necessary to drive a single tube. With either connection, the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of simplifying the balancing of high-frequency circuits and of cancelling the even-order harmonics from the output.

If parasitic oscillations occur in the parallel or the push-pull circuits, they can often be eliminated by connecting a noninductive resistor of 10 to 100 ohms in series with each grid lead, as close to the socket terminal as possible.

\* See Description and Rating Sheet.

# GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

### ELECTRONICS DEPARTMENT

# GENERAL 🛞 ELECTRIC

### Transmitting Tube GL-803—Installation and Operation

#### Installation

The base of the 803 fits a special 5-contact transmitting socket, such as the Type UT-102A, which may be installed to hold the tube in a vertical position with the filament base either up or down. If it is necessary to place the tube in a horizontal position, the tube should be mounted with the plate in a vertical plane (on edge). If the tube is subjected to vibration or shock, a shockabsorbing suspension must be employed.

The <u>bulb</u> becomes very hot during continuous operation. Free circulation of air, therefore, should be provided. Care should be taken that the tube does not come in contact with any metallic object nor be subjected to the spray of liquid. The installation of all wires and connections should be made so that they will not be close to or touch the bulb in order to avoid puncture of the glass due to peak-voltage effects.

The <u>filament</u> voltage should not vary more than plus or minus 5 per cent from the rated value; otherwise, a loss of filament emission may result. The filament voltage may be removed for stand-by periods greater than fifteen minutes. There should be no reduction of filament voltage for periods of less than five minutes. The filament voltage may be reduced to eighty per cent during periods greater than five minutes if desired.

The screen voltage may be obtained from a separate source, from a voltage divider, or from the plate supply through a series resistor. The choice of method depends on the service in which the tube is used (see Operation). When the screen voltage is obtained from a separate source, or from a voltage divider, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screen only, the screen current may rise high enough to cause excessive screen dissipation. When the series-screen-resistor method is used, the resistor should have a value sufficient to drop the high voltage to a

value within the maximum screen-voltage rating given under TECHNICAL INFORMA-TION. When the screen resistor method is used, it is important that the highvoltage switch be opened before the filament or the cathode circuit is opened and before the r-f grid excitation is removed. Unless this precaution is observed, the screen voltage will rise to an excessive value. A a-c millisminater should be used in the screen circuit so that the screen current can be measured and the d-c power input to the screen determined. The screen should not be allowed to actain a temperature corresponding to more than a barely perceptible red color. This temperature corresponds to the screen input values shown under TECHNICAL INFORMATION.

The screen current is a very sensitive indication of plate-circuit loading and rises excessively, often to the point of damaging the tube, when the amplifier is operated without load. For this reason care should be taken when tuning the 803 under no-load conditions to prevent exceeding the screen-input rating of the tube.

Suppressor voltage may be obtained from any fixed-voltage d-c supply. In cases where the suppressor draws current, the supply should be a battery or other source having good regulation.

Overheating of the 803 by severe overload may decrease filament emission. Filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more without voltage on the other electrodes. This process may be accelerated by raising the filament voltage to 12 volts (not higher) for a few minutes.

A protective device, such as a highvoltage fuse, should be used to protect both the screen and plate against overload. When a voltage divider of poor regulation or a series resistor is used for obtaining the screen voltage, the protective device should be placed in the common positive high-voltage supply lead. It should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When a screen voltage is obtained from a separate source or from ~ voltage divider of good regulation, a protective device should also be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

Shielding and isolation of the input and the output circuits are necessary for stable operation. If an external shield is used with the 803, it should be designed to enclose the base end of the tube and extend up to a position level with the internal circular disk located below the plate. Clearance between the glass bulb and external shield should be at least 1/16 in. The r-f impedance between the screen and filament must be kept low, usually by means of a suitable by-pass condenser. The capacitance of this condenser may be in the order of 0.001 to 0.01 uf. Tn telephony service when the screen is modulated, a smaller capacitance may be required in order to avoid excessive a-f by-passing. However, if the capacitance is too small, r-f feedback may occur between plate and control grid, depending on the circuit layout, operating frequency, and power gain of the stage.

In order that the maximum ratings given under TECHNICAL INFORMATION are not exceeded, changes in electrode voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of voltage for each electrode should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This, may be done conveniently by means of a protective resistance of about 5000 ohms in series with the high-voltage supply lead and, when a fixed screenvoltage supply is used, a protective resistance of about 5000 ohms in series with the screen lead.

#### Operation

In Class B r-f pentode service, the 803 is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. The suppressor voltage may be obtained from any fixed d-c supply. In cases where the suppressor draws current, the supply should be a battery or other d-c source of good regulation. Controlgrid bias may be obtained from a battery. from a rectifier of good voltage regulation, or from a cathode resistor, suitably by-passed for audio and radio frequencies.

In suppressor-modulated Class C r-f service, the 803 is supplied with unmodulated d-c plate voltage. The control grid is supplied with unmodulated r-f voltage and the suppressor with negative d-c voltage modulated at audio frequency. The screen voltage should be obtained through a resistor in series with the plate supply (see INSTALLATION). The d-c suppressor voltage may be obtained from any fixed supply. Control-grid bias may be obtained from a grid leak, from a cathode resistor, or from a fixed supply. The cathode resistor should be by-passed for audio and radio frequencies. The grid-leak-bias method has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available.

In grid-modulated Class C r-f pentode service, the 303 is supplied with unmodulated d-c plate voltage. The control-grid bias is modulated et audic frequency. The suppressor voltage may be obtained from a battery or from a fixed supply of good regulation. The audio power required in this service is very small, being sufficient only to meet the peak grid-power requirement of the Class C amplifier on the positive crest of the input signal. The actual value is generally never more than 2 watts, depending on circuit adjustments.

In plate-modulated Class C r-f pentode service, the screen voltage may be obtained from a fixed supply, or through
a voltage-dropping resistor in series with the modulated plate supply. The screen voltage must be modulated with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed screenvoltage supply can be accomplished either by connecting the screen to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable for low audio frequencies impedance should be connected in series with the screen-supply lead. The suppressor voltage may be obtained from any fixed supply. Control-grid bias may be obtained from a grid leak, or from a combination of either grid leak and fixed supply or grid lesk and cathode resistor. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

In plate-modulated Class C r-f tetrode service, grids No. 2 and No. 3 are connected together as the screen. The screen voltage may be obtained through a voltage-dropping resistor connected in series with the unmodulated plate-voltage supply. In this case, the series resistor develops its own modulating voltage. The screen voltage may also be obtained from a separate source, or from a voltage divider across the plate-voltage supply, provided the screen voltage is modulated as discussed under plate-modulated Class C r-f amplifier service (pentode connection) for a fixed screen supply. Control-grid bias considerations

\* See Description and Rating Sheet.

are the same as those for plate-modulated Class C pentode service.

In Class C telegraph service with the pentode connection, the 803 should be supplied with screen voltage from a fixed supply, such as a voltage divider or a separate source. The regulation of the supply need only be good enough to prevent the screen voltage from rising higher than twice the maximum screenvoltage rating under key-up conditions. The screen voltage should not be obtained from a series screen resistor. The suppressor voltage may be obtained by any of the methods shown under IN-STALLATION. Control-grid bias may be obtained by any convenient method.

In <u>Class C telegraph</u> service with the tetrode connection, grids No. 2 and No. 3 are connected together to comprise the screen. Screen voltage and control grid-bias considerations are the same as for pentode Class C telegraph service.

The 803 may be operated at maximum ratings in all classes of service at frequencies as high as 20 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under TECHNICAL INFORMATION. The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used up to 70 mc for any class of service. Special attention should be given to shielding and to r-f by-passing at these frequencies. When shielding is used, care should be taken to insure adequate tube ventilation and the maintenance of normal ambient temperature.



4-44 (10M) Filing No 8850 Supersedes GEII-1115A

www.SteamPoweredRadio.Com



# **Transmitting Tube GL-802 - - Installation and Operation**

### INSTALLATION

The <u>base</u> of the GL-802 fits a 7-contact (0.855-inch pin-circle diameter) socket which may be installed to hold the tube in any position. The plate lead of the tube is brought out at the top of the bulb to a metal cap.

The <u>heater</u> is designed to operate at 6.3 volts under normal conditions of line-voltage variation.

The <u>cathode</u> circuit of the 802 should be connected to the electrical midpoint of the heater circuit when the heater is operated from an a-c supply. When the heater is operated from a d-c source, the cathode circuit is tied to the negative heater-supply lead. In circuits where the cathode is not directly connected to the heater, the potential difference between them should not exceed 100 volts. If the use of a large resistor is necessary between heater and cathode in some circuit designs, it should be by-passed by a suitable filter network to avoid the possibility of hum.

The <u>plate</u> of the 802 shows no color at the maximum plate-dissipation rating for each class of service.

The screen voltage may be obtained from a separate source, from a potentiometer, or from the plate supply through a series resistor. The choice of method depends on the service in which the tube is used (see APPLICATION). When the screen voltage is obtained from a separate source, or from a potentiometer, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screen only, the screen current may rise high enough to cause excessive screen dissipation. When screen-voltage regulation is not an important factor, the series-resistance method for obtaining screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. A d-c milliammeter should be used in the screen circuit so that the screen current can be measured and the d-c power input to the screen determined.

The screen should not be allowed to attain a temperature corresponding to more than a barely perceptible red color. This temperature corresponds to the screen input value shown under CHARACTERISTICS.

Suppressor voltage for the 802 may be obtained from any suitable d-c supply. In cases where the suppressor draws current, the supply should be a battery or other d-c source of good regulation.

The <u>internal shield</u> is brought out of the tube to its own separate base pin. The internal shield should be connected to a terminal operating at zero r-f and/or a-f potential. In most cases, this connection will be made to the cathode or suppressor terminal.

A protective device, such as a highvoltage fuse, should be used to protect both the screen and plate against overload. When a bleeder resistor of poor regulation or a series resistor is used for obtaining the screen voltage, the protective device should be placed in the common positive high-voltage supply lead. It should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When a screen voltage is obtained from a separate source or from a bleeder of good regulation, a protective device should also be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

Shielding and isolation of the input and the output circuits are necessary for stable operation. If an external shield is used with the 802, it should be designed to enclose the base end of the tube and extend up to a position level with the bottom of the internal shield. Clearance between the glass bulb and external shield should be at least 1/16 inch. The r-f impedance between the screen and filament must be kept low, usually by means of a suitable by-pass condenser. The capacitance of this condenser may be in the order of 0.01 to 0.1 µf in telephony service when the screen is modulated; a smaller capacitance may be required in order to avoid excessive a-f by-passing. However, if the capacitance is too small, r-f feedback may occur between plate and control grid, depending on the circuit layout, operating frequency, and power gain of the stage. A-f by-passing difficulties can usually be eliminated if the screen by-pass condenser is replaced by a series-tuned circuit to resonate at the operating frequency. The series-tuned circuit presents a high impedance to audio frequencies but a very low impedance to its resonant frequency.

In order that the maximum ratings given under CHARACTERISTICS are not exceeded, changes in electrode voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of voltage for each electrode should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This may be done conveniently by means of a protective resistance of about 4000 ohms in series with the high-voltage supply lead and, when a fixed screenvoltage supply is used, a protective resistance of about 3000 ohms in series with the screen lead.

The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when exposed circuit parts are at high d-c plate potential.

### OPERATION

In Class A power amplifier pentode, the 802 may be operated as shown under CHARACTERISTICS. In this service the screen voltage should be obtained from a separate source or from a potentiometer connected across the power supply. The suppressor should be connected to the cathode at the socket. Control-grid bias may be obtained from a fixed supply or from a cathode-bias resistor. The d-c resistance in the grid circuit should not exceed 10,000 ohms with fixed bias, or 500,000 ohms with cathode bias.

In Class B r-f pentode service, the 802 is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. The suppressor voltage may be obtained from any fixed d-c supply. In cases where the suppressor draws current, the supply should be a battery or other d-c source of good regulation. Controlgrid bias may be obtained from a battery, from a rectifier of good voltage regulation, or from a cathode resistor, suitably by-passed for audio and radio frequencies.

In suppressor-modulated Class C r-f service, the 802 is supplied with unmodulated d-c plate voltage. The control grid is supplied with unmodulated r-f voltage and the suppressor with negative d-c voltage modulated at audio frequency. The screen voltage should be obtained through a resistor in series with the plate supply (see INSTALLATION). The d-c suppressor voltage may be obtained from any fixed supply. Control-grid bias may be obtained from a grid leak, from a cathode resistor, or from a fixed supply. The cathode resistor should be by-passed for audio and radio frequencies. The grid-leak-bias method has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. Special care must be observed with the use of this system because the accidental removal of the excitation will cause the grid bias to fall to zero and the plate current to rise to an excessive value. The use of a protective device designed to remove the screen and plate voltages on excessive rises of plate current will minimize the danger of overload (see IN-STALLATION). Control-grid bias is not critical so that correct adjustment may be obtained with widely different values.

In grid-modulated Class C r-f pentode service, the 802 is supplied with unmodulated d-c plate voltage. The control-grid bias is modulated at audio frequency. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply. The suppressor voltage may be obtained from a battery or from a fixed supply of good regulation. Controlgrid bias should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply. The audio power required in this service is very small, being sufficient only to meet the peak grid-power requirement of the Class C amplifier on the positive crest of the input signal. The actual value is generally never more than 0.5 watt, depending on circuit adjustments.

In plate-modulated Class C r-f pentode service, the 802 can be modulated 100 per cent. The screen voltage may be obtained from a fixed supply, or through a voltage-dropping resistor in series with the modulated plate supply. The screen voltage must be modulated with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed screen-voltage supply can be accomplished either by connecting the screen to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. The suppressor voltage may be obtained from any fixed supply. Control-grid bias may be obtained from a grid leak, or from a combination of either grid leak and fixed supply or grid leak and cathode resistor. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation. Grid-bias voltage for this service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In plate-modulated Class C r-f tetrode service, the 802 is capable of being modulated 100 per cent. Grids No. 2 and No. 3 are connected together as the screen. The screen voltage may be obtained through a voltage-dropping resistor connected in series with the <u>unmodulated</u> plate-voltage supply. In this case, the series resistor develops its own modulating voltage. The screen voltage may also be obtained from a separate source, or from a potentiometer across the plate-voltage supply, provided the screen voltage is modulated as discussed under plate-modulated Class C r-f amplifier service (pentode connection) for a fixed screen supply. Control-grid bias considerations are the same as those for plate-modulated Class C pentode service.

In <u>Class C telegraph service with</u> <u>the pentode connection</u>, the 802 may be operated with screen and suppressor voltage obtained in the manner discussed under INSTALLATION. Grid bias may be obtained by any convenient method.

In <u>Class C telegraph service with</u> the tetrode connection, grids No. 2 and No. 3 are connected together to comprise the screen. The screen voltage may be obtained by any of the methods discussed under INSTALLATION. Grid bias may be obtained by any convenient method.

As a pentode or tetrode oscillator (crystal or self excited), the 802 may be operated under the conditions shown for Class C telegraph services. Because the internal shielding in this tube is unusually effective, it generally is necessary to introduce external feedback in those circuits which depend on the control-grid-to-plate capacity for oscillation. This may be done by the use of a small condenser not larger than 2 to  $\mathcal{J}$  $\mu\mu$ f connected between control grid and plate.

The 802 may be operated at maximum ratings in all classes of service at frequencies as high as 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under CHAR-ACTERISTICS.) The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used up to 110 mc for any class of service. Special attention should be given to shielding and to r-f by-passing at these frequencies. When shielding is used, care should be taken to insure adequate tube ventilation and the maintenance of normal ambient temperature.

\* See Description and Rating Sheet

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com If more r-f power output is required than can be obtained from one 802, the push-pull or the parallel circuit may be used. For example, two tubes connected in push-pull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the pushpull connection requires twice the r-f excitation voltage necessary to drive one tube. With either connection the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube. The push-pull arrangement has the advantage of balancing high-frequency circuits to ground and of cancelling the even-order harmonics from the output. If parasitic oscillations occur in the parallel or the push-pull circuits, a noninductive resistor of 10 to 100 ohms connected in series with the grid leak of each tube, as close to the socket as possible, will often prevent the oscillations.

# GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

# GENERAL 🛞 ELECTRIC

# **Transmitting Tube GL-1619 - - Installation and Operation**

### INSTALLATION

The <u>base</u> pins of the 1619 fit the standard octal socket which should be installed to hold the tube in a vertical position with the base either up or down. If the tube is subjected to vibration or shock, a shock-absorbing suspension should be employed.

The <u>filament</u> is designed to provide a minimum of delay in starting the tube. The filament is of the coated type and may be operated either from an a-c or d-c source. The characteristics shown under MAXIMUM RATINGS and TYPICAL OPERAT-ING CONDITIONS are based on a-c filament operation.

The <u>beam-forming plates</u> of the 1619 are connected to a separate base pin. They should always be operated at zero potential with respect to the filament; never positive. When the filament is operated from an a-c supply, the beamforming plates should be connected to the mid-point of the filament circuit. When the filament is operated from a d-c supply, they should be connected to the negative end of the filament.

The screen voltage may be obtained from a separate source, from a potentiometer, or from the plate supply through a series resistor. The choice of method depends on the service in which the tube is used (see OPERATION). When the screen voltage is obtained from a separate source, or from a potentiometer, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screen only, the screen current may rise high enough to cause excessive screen dissipation. When screen-voltage regulation is not an important factor, the series resistance method for obtaining screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. A d-c milliammeter should be used in the screen circuit so that the screen current can be measured and the d-c power input to the screen determined.

In all services, precautions should be taken to insure that the plate and screen dissipation ratings are not exceeded with expected supply-voltage variation, especially when fixed bias is used. In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus. must be determined. An average value of plate and filament voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

A protective device, such as a high-voltage fuse, should be used to protect both the screen and plate against overloads. When a bleeder resistor of poor regulation or a series resistor is used for obtaining the screen voltage, this device should be placed in the common positive highvoltage supply lead. It should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When the screen voltage is obtained from a separate source or from a bleeder of good regulation, a protective device should also be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

Shielding and isolation of the input and output circuits are required for stable operation. The impedance between the screen and cathode must be kept low, usually by means of a suitable by-pass condenser. When the screen voltage is obtained from the plate supply through a series resistor, the screen by-pass condenser should have a voltage rating at least equal to the d-c plate voltage applied to the tube. The capacitance value of this condenser may be in the order of 0.01 to 0.1 uf. In telephony service when the screen is modulated, a smaller capacitance may be required in order to avoid excessive a-f by-passing. However, if the capacitance is too small, r-f feedback may occur between plate and control grid, depending on the circuit layout, operating frequency, and power gain of the stage. A-f by-passing difficulties can usually be eliminated if the screen by-pass condenser is replaced by a series-tuned circuit to resonate at the operating frequency. The seriestuned circuit presents a high impedance to audio frequencies but a very low impedance to its resonant frequency.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This may be done conveniently by means of a protective resistance of about 10000 ohms, total, in series with the screen lead and a protective resistance of about 3000 ohms in series with the high-voltage supply lead.

#### OPERATION

In <u>class A1</u> power amplifier service, the 1619 may be operated as shown under CHARACTERISTICS. The values are for fixed-bias operation and have been determined on the basis that no grid current flows during any part of the input signal swing. The second harmonics can easily be eliminated by the use of push-pull circuits. In single-tube, resistance-coupled circuits, the secondharmonics can be minimized by generating gut-of-phase second harmonics in the pre-amplifier.

In <u>push-pull class AB<sub>2</sub> power am-</u> <u>plifier service</u>, the 1619 may be operated as shown under CHARACTERISTICS. The values are for fixed-bias operation and have been determined on the basis that no grid current flows during any part of the input signal swing.

In <u>push-pull Class AB2</u> amplifier <u>service</u>, the 1619 may be operated as shown under CHARACTERISTICS. The values cover operation with fixed bias and have been determined on the basis that some grid current flows during the most positive swing of the input signal. The type of <u>input coupling</u> used in audio-frequency services should not introduce too much resistance in the gridcircuit. The maximum values are shown under CHARACTERISTICS. Transformer- or impedance-coupling devices are recommended.

In grid-modulated class C telephone service, the 1619, is supplied with unmodulated r-f grid excitation voltage and with a d-c grid bias which is modulated at audio frequencies. Grid bias should preferably be obtained from an unby-passed cathode resistor, although it may also be obtained from a fixed supply or a grid leak. The plate is supplied with unmodulated d-c voltage. The audio power required in this service is very small, being sufficient only to meet the peak grid power requirement of the class C amplifier on the positive crest of the input signal. The screen voltage should be obtained from a separate source or from a potentiometer connected across the plate supply.

In plate-modulated class C r-f amplifier service, the GL-1619 can be modulated 100 per cent. The screen voltage may be obtained from a fixed supply or from a voltage-dropping resistor in series with the modulated plate supply. The screen voltage must be modulated simultaneously with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed screen-voltage supply can be accomplished either by connecting the screen lead to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. When the latter method is used, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. Control-grid bias may be obtained from a grid leak or from a combination of either grid leak and fixed supply, or grid leak and cathode-bias resistor. The combination method is particularly desirable because distortion effects are minimized by bias-supply compensation. Grid-bias voltage for class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In class C r-f telegraph service, the 1619 may be supplied with screen voltage by any of the methods shown under INSTALLATION. Grid bias may be obtained from a grid leak, from a battery, from a rectifier, or from a cathode-bias resistor (preferably variable) suitably by-passed for radio frequencies. Since grid-bias voltage for class C service is not critical, correct adjustment may be obtained with

# widely different values.

The GL-1619 may be operated at maximum ratings in all classes of service at frequencies as high as 45 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS,) so that at 90 megacycles the plate voltage and power input are only 75 per cent of the maximum ratings. Special attention should be given to shielding and to r-f bypassing at the higher frequencies.



6-40 (2M) Filing No. B8850

# GENERAL 🍪 ELECTRIC

# **Transmitting Tube GL-892-R - - Installation and Operation**

### Installation

The handling of the 892-R in transportation and storage requires great care, since the tube may be permanently damaged if subjected to sudden jars. Each 892-R is suspended within its shipping crate so that it will not come in contact with the sides of the crate during shipment. The tube should be stored in the crate with the filament end up and should be protected from moisture and extreme temperature changes. Furthermore, while the tube is being handled, it should be kept in a vertical position with the filament end up. Under no circumstances should crated tubes be piled on top of one another. The weight of the tube with the air-cooled radiator is 40 pounds uncrated and approximately 90 pounds crated.

It is recommended that the tube be tested upon receipt in the equipment in which it is to be used. Before the tube is placed in operation, care should be taken that the glass bulb, and particularly the entrant glass area around the filament leads, is free from foreign matter. These leads become so hot during operation that any paper, shavings, or excelsior, not removed from the stem may become charred and cause puncture of the bulb. An air blast is recommended for removing such material.

The mounting of the 892-R requires the use of the permanently fitted aircooled radiator. Supplementary equipment includes a grid-terminal connector and several filament-terminal connectors. The connectors usually are part of the transmitter equipment. The tube should be supported in a vertical position with the glass end up. If the 892-R is subjected to appreciable vibration in service, it is advisable to support the mounting frame, or the mounting itself, The installation of all by springs. wires and connectors must be made so that they will not be close to or touch the bulb. This precaution is necessary in order to avoid almost certain punc-

ture of the glass from corona discharge. Connections to the grid and filament connectors must have some degree of flexibility in order not to put a stress on the grid cap or filament-terminal posts. The leads should be fastened to the terminal clamps before they are placed in position. When the leads are soldered to the clamps, a hard type solder should be used. This solder should remain firm at temperatures of 250 C, or more. When the Clamps are in place. carefully tighten the setscrews to insure good electrical contact. Connections should never be soldered directly to the tube terminals as the heat of the soldering operation may result in the cracking of the seal. The grid terminal cap should not be used to support coils, condensers, chokes, or other circuit parts.

The cooling of the 892-R is accomplished by means of an air-cooled fin radiator which is permanently fitted to the plate at the factory. This radiator must be cooled by means of a vertical air blast of 400 to 600 cubic feet per minute. The temperature of the cooling air should not exceed 45 C. The aircooling system should be properly installed to insure safe operation of the tube under all conditions and for this reason should be electrically interconnected with the filament and plate supply to prevent the application of voltages to the tube without suitable cooling. Air-pressure interlocks which open the circuit breakers of the filament- and plate-power transformers, are necessary for protecting the tube when the air flow is insufficient or ceases. The radiator is equipped with two wells, one of which is for the insertion of a thermometer to indicate the radiator temperature.

The tungsten <u>filament</u> of the 892-R is of the double-unit type. One end of each unit is brought out of the tube to a common terminal. The other two ends are brought out to separate terminals.



The common terminal of the base is larger in diameter than the two end terminals. By proper filament connection, this arrangement makes possible the operation of the filament from two-phase and single-phase alternating current, as well as from direct current. See page 6. For normal operation. each filament unit requires a filament voltage of 11 volts at a current of 60 amperes. The grid and plate returns should be connected to one side of the filament supply when direct current is used, to the center tap of the filament transformer when a single-phase a-c supply is used, and through a balancing resistor to the midpoint of each secondary coil of a twophase transformer when a two-phase a-c When direct current is supply is used. used, the polarity of the filament leads should be reversed every 500 hours of operation. The filament should be operated at constant voltage rather than constant current and must be allowed to reach at least 80 per cent normal voltage before plate voltage is applied. Intermittent power supply interruptions may be allowed provided the time off does not exceed one second. If the tube is to be used at relatively low output, the plate current will be less than normal, requiring less than normal emission of the filament. The filament, therefore, may be operated at a voltage slightly lower than rated voltage, giving longer life. The permissible reduction in filament voltage may be checked by reducing the filament voltage with the transmitter under normal operation to a value where reduction in output or increase in distortion can just The filament voltage must be detected. then be increased by an amount equivalent to the maximum percentage regulation of the filament supply voltage. Care must be taken that sufficient emission is provided. Otherwise, instability of operation or excessive distortion may be experienced, or the rated plate dissipation of the tube may be exceeded. From the viewpoint of tube life it is usually economically advantageous to provide good regulation of the filament voltage. For example, if the filament is operated continuously at 6 per cent above normal voltage, the evaporation life will be reduced to approximately one half. The filament voltmeter should be connected to indicate voltage at the filament terminals. Since the filament

current of the 892-R is very high, the filament connectors should be large and make good contact. The filament base of the 892-R should not be connected to ground or to any part of the circuit.

A filament starter should be used to raise the filament voltage gradually and to limit the high initial rush of current through the filament when the circuit is first closed. The starter may be either a system of time-delay relays cutting resistance out of the circuit, a high-reactance filament transformer, or a simple rheostat. Regardless of the method of control, it is important that the filament current per unit never exceed, even momentarily, a value of 120 amperes. Whenever the filament voltage is turned off, it is advisable to reduce the voltage gradually in steps over a period of 2 to 3 minutes. This precaution is necessary to avoid undue mechanical tension and premature filament breakage caused by the difference in cooling rate of the heavy filament center post and the thin filament strands.

The plate circuit should be provided with a time-delay relay which will prevent the application of plate voltage until the filament has reached normal operating temperature.

When the apparatus in which the tube is used is to be idle for periods not exceeding 2 hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately 80 per cent of the rated value during "stand-bys." Where stand-by periods exceed two hours the filament voltage may be removed.

The maximum radiator temperature must not be exceeded under any condition. Air-pressure interlocks which prevent the application of plate and filament voltages under conditions of inadequate air supply should be provided.

Overheating of the 892-R by severe overload may impair its vacuum. Unless the overload has liberated a large amount of gas, it is often possible to degasify the tube by operating it as an r-f power amplifier or oscillator at reduced plate voltage. The first step in the process should be a short period of operation at a plate voltage of 5000 volts or less. The voltage may then be raised in steps of about 2000 volts until the normal operating voltage is attained. At each new voltage, the tube should be operated long enough to insure the attainment of stable conditions.

In order to prevent excessive plate-current flow and the resultant overheating, the ground lead of the plate circuit should be connected in series with the coil of an instantaneous This relay should be overload relay. adjusted to open the circuit breakers in the primary of the rectifier transformer at slightly higher than normal plate The total time required for current. the operation of the relay and circuit breakers should be about one-tenth second and not more than one-sixth second. A voltage-dropping resistor should be connected permanently in series with the plate lead of each tube for protection of the tube during the time required for the protective relay and circuit breaker to act. The minimum value of this resistor which will give adequate protection with minimum power loss is as follows:

Series 25 50 200 250 275 300 Ohms

Maximum Power Output of Rectifier

Precautions must be taken so that no high capacitance is connected directly across the tube in any manner such that a disturbance within the tube will discharge appreciable energy from the capacitor.

Suitable meters should be provided for the reading of filament voltage, d-c plate voltage, d-c grid voltage, d-c plate current, d-c grid current, and r-f grid current, as well as for the recording of tube life (hours of operation). In addition to the use of meters for indicating suitable operating conditions, their use is also of value in making transmitter adjustments. In modulated service, a cathode-ray oscillograph is recommended to assist in the making of final adjustments for optimum performance. Under no conditions should the maximum values given under MAXIMUM RAT-INGS and TYPICAL OPERATING CONDITIONS be exceeded.

Heavy leads and conductors together with suitable insulation should be used in all parts of the r-f plate tank circuit so that the losses due to the r-f voltages and currents may be kept at a minimum. Because proper circuit design becomes very important at the higher frequencies, short, heavy leads and circuit returns are essential in order to minimize lead inductance and losses.

When an 892-R is first placed in operation, care should be taken to see that the air-cooling system is functioning properly. The tube should then be operated without plate voltage for five minutes at rated filament voltage. After this initial preheating schedule, the plate voltage can be applied. Start with not more than one-half the usual operating voltage and then carefully increase it in steps of about 2000 volts over a period of approximately 15 minutes to the desired value. The tube should then be operated under the normal load conditions for a period of one hour or more. The plate voltage is usually varied by means of primary taps on the plate transformer. The plate-circuit relay should be open when the transformer primary taps are changed in order to avoid dangerous voltage surges. Tt. is recommended that every three months spare tubes be given the preheating and initial operation schedule as discussed This will insure that only good above. tubes are carried in stock.

In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate- and filament-supply voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced to one-half the rated value to prevent damage to the tube or associated apparatus. After correct adjustment has been made with the tube operating smoothly and without excessive heating, the plate voltage may be raised in several steps to the desired value. Adjustments should be made at each step for optimum operation.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

Protective devices are essential for the 892-R, as in the case of other power equipment of high capacity. and are summarized as follows. Air-pressure interlocks which open the circuit breakers in the primary circuits of the filament and plate power transformers are necessary for protecting the tube when the cooling system fails. A time-delay relay should be used in the plate circuit to prevent application of plate voltage until the filament has reached at least 80 per cent normal voltage. The ground lead of the plate circuit should be provided with an instantaneous overload relay to prevent excessive plate current and tube overheating. In addition to the latter precaution, a voltage-dropping resistor should be connected permanently in series with the plate lead to protect the tube during the time required for the protective relay and circuit breaker to act.

The rated plate voltage of the 892-R is extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which are at a high potential above ground, should be enclosed in a protective housing. This housing may be of fibre or similar insulating material. If metal housing is used, care should be taken that it does not absorb excessive power. The protective housing should be designed with automatic interlocks so that the operating personnel cannot possibly come in accidental contact with any high-voltage point in the electrical These interlock devices should system. function to break the primary circuit of the plate-voltage supply when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

#### Operation

As a <u>Class B modulator or audio-frequency amplifier</u>, two 892-R's are used in a balanced circuit, each tube amplifying only half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class C stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as a plate-to-plate load of 8400 ohms in the Class B stage for the 10,000-volt conditions. It should have a core sufficiently large to avoid saturation effects which would impair the quality of the output. Grid bias for the 892-R in Class B a-f service should be obtained from a generator or other d-c source of excellent regulation. It should not be obtained from a high-resistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation. Each gird circuit should be provided with a separate grid-bias adjustment in order to balance the grid and plate current.

As a Class B radio-frequency amplifier, the 892-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS. In Class B r-f service, the plate is supplied with unmodulated d-c voltage. The grid is excited by r-f voltage modulated at audio-frequency in one of the preceding stages and the power output is proportional to the square of the grid-excitation voltage. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. Grid bias should be obtained from a generator, from a rectifier of excellent regulation, or from a cathode-bias resistor, suitably bypassed for audio and radio frequencies.

As a plate-modulated Class C radiofrequency amplifier, the 892-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias for this service may be obtained from a grid leak of approximately 5500 ohms, or from a suitable combination of either grid leak and fixed supply, or grid leak and cathode-bias resistor. The cathodebias resistor should be suitably bypassed for audio and radio frequencies. The combination-bias methods are particularly desirable because distortion effects are minimized by bias-supply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service

As a <u>Class C radio-frequency ampli-</u> fier and oscillator for telegraph service, the 892-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias for this service may be obtained from a grid leak of 5500 to 7500 ohms, from a generator, from a rectifier. or from a cathode-bias resistor (preferably variable) suitably by-passed for radio frequencies. The cathode-bias method is advantageous due to the fact that the grid bias is automatically regulated in direct proportion to the sum of the plate and the grid current and that there is little chance of the plate current becoming dangerously high, even if the r-f grid excitation is removed. Grid-leak bias has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. The use of protective devices (see INSTALLA-TION) designed to open the plate circuit on excessive rises of plate current minimizes danger of overload. Since grid-bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.

The <u>grid circuit</u> must be so arranged that it is impossible for high voltages to be established between the grid and filament at any frequency except the fundamental in order to prevent parasitic oscillations. The grid voltage at the fundamental frequency should be sufficient to provide only the necessary grid excitation for the tube. Because of the high current carried by the grid lead and its adjoining circuit, heavy conductors carefully connected should be used.

The d-c grid current and the r-f grid current should never exceed the values given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Operating values will vary with individual tubes and circuits.

The 892-R may be operated at maximum ratings in all classes of service at frequencies up to 1.5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS.) The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used at 1.5, 7.5, and 20 mc for any class of service. Special attention should be given to adequate cooling and the maintenance of normal ambient temperatures at these frequencies.

With the grid connected to the plate through the shortest possible connection, the resonant frequency of the grid-plate circuit is approximately 60 megacycles.

If more radio-frequency power output is required than can be obtained from a single 892-R, the push-pull or the parallel connection may be used. For example, two tubes connected in pushpull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube. The push-pull arrangement has the advantage of balancing the circuit with respect to ground and of cancelling the even-order harmonics from the output. When the parallel connection is used, a noninductive resistor of 10 to 100 ohms and a choke coil or other suitable network should be placed in series with the grid lead of each tube, as close to the tube as possible, in order to prevent parasitic oscillations. With either connection, it is preferable to provide for a separate grid-bias or grid-excitation adjustment in order to balance the grid and the plate current.

|       | Careful |    | handling |     |     | and co: |      | onse  | nservative |     |    |     |
|-------|---------|----|----------|-----|-----|---------|------|-------|------------|-----|----|-----|
| opera | ti      | on | of       | t.  | ne  | 892     | 2 -R | will  | l re       | sul | Lt | in  |
| longe | r       | li | fe       | and | moi | re      | sa   | tisfa | acto       | ory | pe | er- |
| forma | nce     | з. |          |     |     |         |      |       |            |     |    |     |

\* See Description and Rating Sheet

# FILAMENT CONNECTIONS

WITH D-C EXCITATION



V = 22 VOLTS A = 60 AMPERES

WITH SINGLE-PHASE A-C EXCITATION





V=22 VOLTS

A = 60 AMPERES



V = II VOLTS A = 60 AMPERES





GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

7-43 (2500) Filing No. 8850 Superseding GEH-1120A

U.S.A.

# GENERAL 🍘 ELECTRIC

# **Transmitting Tube GL-891-R - - Installation and Operation**

#### Installation

The handling of the 891-R in transportation and storage requires great care, since the tube may be permanently damaged if subjected to sudden jars. Each 891-R is suspended within its shipping crate so that it will not come in contact with the sides of the crate during shipment. The tube should be stored in the crate with the filament end up and should be protected from moisture and extreme temperature changes. Furthermore, while the tube is being handled, it should be kept in a vertical position with the filament end up. Under no circumstances should crated tubes be piled on top of one another. The wieght of the tube with the air-cooled radiator is 40 pounds uncrated and approximately 90 pounds crated.

It is recommended that the tube be tested upon receipt in the equipment in which it is to be used. Before the tube is placed in operation, care should be taken that the glass bulb, and particularly the entrant glass area around the filament leads, is free from foreign matter. These leads become so hot during operation that any paper, shavings, or excelsior, not removed from the stem, may become charred and cause puncture of the bulb. An air blast is recommended for removing such material.

The mounting of the 891-R requires the use of the permanently fitted aircooled radiator. Supplementary equipment includes a grid-terminal connector and several filament-terminal connectors. The connectors usually are part of the transmitter equipment. The tube should be supported in a vertical position with the glass end up. If the 891-R is subjected to appreciable vibration in service, it is advisable to support the mounting frame, or the mounting itself, by springs. The installation of all wires and connectors must be made so that they will not be close to or touch the bulb. This precaution is necessary in order to avoid almost certain punc-

ture of the glass from corona discharge. Connections to the grid and filament connectors must have some degree of flexibility in order not to put a stress on the grid-cap terminal clamps before they are placed in position. When the leads are soldered to the clamps, a hard type solder should be used. This solder should remain firm at temperatures of 250 C, or more. When the clamps are in place, carefully tighten the setscrews to insure good electrical contact. Connections should never be soldered directly to the tube terminal posts as the heat of the soldering operation may result in the cracking of the seal. The grid terminal cap should not be used to support coils, condensers, chokes, or other circuit parts.

The cooling of the 891-R is accomplished by means of an air-cooled fin radiator which is permanently fitted to the plate at the factory. This radiator must be cooled by means of a vertical air blast of 400 to 600 cubic feet perminute. The temperature of the cooling air should not exceed 45 C. The aircooling system should be properly installed to insure safe operation of the tube under all conditions and for this reason should be electrically interconnected with the filament and plate supply to prevent the application of voltages to the tube without suitable cooling. Air-pressure interlocks which open the circuit breakers of the filament- and plate-power transformers, are necessary for protecting the tube when the air flow is insufficient or ceases. The radiator is equipped with two wells, one of which is for the insertion of a thermometer to indicate the radiator temperature.

The tungsten <u>filament</u> of the 891-R is of the double-unit type. One end of each unit is brought out of the tube to a common terminal. The other two ends are brought out to separate terminals. The common terminal of the base is larger in diameter than the two end terminals. By proper filament connection, this arrangement makes possible the operation of the filament from two-phase and single-phase alternating current, as well as from direct current. See page 6. For normal operation, each filament unit requires a filament voltage of 11 volts at a current of 60 amperes. The grid and plate returns should be connected to one side of the filament supply when direct current is used, to the center tap of the filament transformer when a single-phase a-c supply is used, and through a balancing resistor to the midpoint of each secondary coil of a twophase transformer when a two-phase a-c supply is used. When direct current is used. the polarity of the filament leads should be reversed every 500 hours of operation. The filament should be operated at constant voltage rather than constant current and must be allowed to reach at least 80 per cent normal voltage before plate voltage is applied. Intermittent power supply interruptions may be allowed provided the time off does not exceed one second. If the tube is to be used at relatively low output. the plate current will be less than normal, requiring less than normal emission of the filament. The filament, therefore, may be operated at a voltage slightly lower than rated voltage, giving longer life. The permissible reduction in filament voltage may be checked by reducing the filament voltage with the transmitter under normal operation to a value where reduction in output or increase in distortion can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament supply voltage. Care must be taken that sufficient emission is provided. Otherwise, instability of operation or excessive distortion may be experienced, or the rated plate dissipation of the tube may be exceeded. From the viewpoint of tube life it is usually economically advantageous to provide good regulation of the filament voltage. For example, if the filament is operated continuously at 6 per cent above normal voltage, the evaporation life will be reduced to approximately one half. The filament voltmeter should be connected to indicate voltage at the filament terminals. Since the filament current of the 891-R is very high, the filament connectors should be large and make good contact. The filament base of the 891-R should not be connected to ground or to any part of the circuit.

A filament starter should be used to raise the filament voltage gradually and to limit the high initial rush of current through the filament when the circuit is first closed. The starter may be either a system of time-delay relays cutting resistance out of the circuit. a high-reactance filament transformer, or a simple rheostat. Regardless of the method of control, it is important that the filament current per unit never exceed, even momentarily, a value of 120 amperes. Whenever the filament voltage is turned off, it is advisable to reduce the voltage gradually in steps over a period of two to three minutes. This precaution is necessary to avoid undue mechanical tension and premature filament breakage caused by the difference in cooling rate of the heavy filament center post and the thin filament strands.

The plate circuit should be provided with a time-delay relay which will prevent the application of plate voltage until the filament has reached normal operating temperature.

When the apparatus in which the tube is used is to be idle for periods not exceeding two hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately 80 per cent of the rated value during "stand-bys." Where stand-by periods exceed two hours the filament voltage may be removed.

The maximum radiator temperature must not be exceeded under any condition. Air-pressure interlocks which prevent the application of plate and filament voltages under conditions of inadequate air supply should be provided.

Overheating of the 891-R by severe overload may impair its vacuum. Unless the overload has liberated a large amount of gas, it is often possible to degasify the tube by operating it as an r-f power amplifier or oscillator at reduced plate voltage. The first step in the process should be a short period of operation at a plate voltage of 5000 volts or less. The voltage may then be raised in steps of about 2000 volts until the normal operating voltage is attained. At each new voltage, the tube should be operated long enough to insure the attainment of stable conditions.

In order to prevent excessive plate-current flow and the resultant overheating, the ground lead of the plate circuit should be connected in series with the coil of an instantaneous overload relay. This relay should be adjusted to open the circuit breakers in the primary of the rectifier transformer at slightly higher than normal plate current. The total time required for the operation of the relay and circuit breakers should be about one-tenth second and not more than one-sixth second. A voltage-dropping resistor should be connected permanently in series with the plate lead of each tube for protection of the tube during the time required for the protective relay and circuit breaker to act. The minimum value of this resistor which will give adequate protection with minimum power loss is as follows:

Series 25 50 200 250 275 300 Ohms

Maximum Power Output of Rectifier

Precautions must be taken so that no high capacitance is connected directly across the tube in any manner such that a disturbance within the tube will discharge appreciable energy from the capacitor.

Suitable meters should be provided for the reading of filament voltage, d-c plate voltage, d-c grid voltage, d-c plate current, d-c grid current, and r-f grid current, as well as for the recording of tube life (hours of operation). In addition to the use of meters for indicating suitable operating conditions, their use is also of value in making transmitter adjustments. In modulated service, a cathode-ray oscillograph is recommended to assist in the making of final adjustments for optimum performance. Under no conditions should the maximum values given under MAXIMUM RAT-INGS and TYPICAL OPERATING CONDITIONS be exceeded.

Heavy leads and conductors together with suitable insulation should be used in all parts of the r-f plate tank circuit so that the losses due to the r-f voltages and currents may be kept at a minimum. Because proper circuit design becomes very important at the higher frequencies, short, heavy leads and circuit returns are essential in order to minimize lead inductance and losses.

When an 891-R is first placed in operation, care should be taken to see that the air-cooling system is functioning properly. The tube should then be operated without plate voltage for five minutes at rated filament voltage. After this initial preheating schedule, the plate voltage can be applied. Start with not more than one-half the usual operating voltage and then carefully increase it in steps of about 2000 volts over a period of approximately 15 minutes to the desired value. The tube should then be operated under the normal load conditions for a period of one hour or more. The plate voltage is usually varied by means of primary taps on the plate transformer. The plate-circuit relay should be open when the transformer primary taps are changed in order to avoid dangerous voltage surges. It is recommended that every three months spare tubes be given the preheating and initial operation schedule as discussed above. This will insure that only good tubes are carried in stock.

In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of plate- and filament-supply voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced to one-half the rated value to prevent damage to the tube or associated apparatus. After correct adjustment has been made with the tube operating smoothly and without excessive heating, the plate voltage may be raised in several steps to the desired value. Adjustments should be made at each step for optimum operation.

Protective devices are essential for the 891-R, as in the case of other power equipment of high capacity, and

are summarized as follows: Air-pressure interlocks which open the circuit breakers in the primary circuits of the filament- and plate-power transformers, are necessary for protecting the tube when the cooling system fails. A time-delay relay should be used in the plate circuit to prevent application of plate voltage until the filament has reached at least 80 per cent normal voltage. The ground lead of the plate circuit should be provided with an instantaneous overload relay to prevent excessive plate current and tube overheating. In addition to the latter precaution, a voltage-dropping resistor should be connected permanently in series with the plate lead to protect the tube during the time required for the protective relay and circuit breaker to act.

The rated plate voltage of the 891-R is extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which are at a high potential above ground, should be enclosed in a protective housing. This housing may be of fibre or similar insulating material. If metal housing is used, care should be taken that it does not absorb excessive power. The protective housing should be designed with automatic interlocks so that the operating personnel cannot possibly come in accidental contact with any high-voltage point in the electrical system. These interlock devices should function to break the primary circuit of the plate-voltage supply when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

# Operation

As a Class A audio-frequency amplifier or modulator, the 891-R is capable of delivering approximately 2000 watts of audio-frequency power with very low distortion. Typical operating conditions are shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias for a single tube in Class A service may be obtained from a separate voltage source or by means of a cathode-bias resistor shunted by a condenser large enough to minimize degenerative effects at low audio frequencies.

If more audio output is desired than can be obtained from a single 891-R. two or more 891-R's may be operated in parallel or in push-pull. For example. two tubes in parallel provide twice the output of a single tube without an increase in grid-signal voltage. The pushpull connection will give slightly more than double the power output of a single tube that requires twice the grid-signal voltage. The push-pull arrangement has the advantage of balancing out the evenorder harmonics from the output. If the tubes are operated in parallel. a noninductive resistance of 10 to 100 ohms should be placed in series with each grid lead, as close to the tube as possible, in order to prevent parasitic oscillations. When the parallel or the push-pull connection is used, each grid circuit should be provided with a separate grid-bias adjustment in order to balance the grid and plate current.

In cases where the input circuit of the 891-R is resistance-coupled or impedance-coupled, the resistance in the grid circuit should not be made too high. A resistance value of 100,000 ohms for one 891-R is the recommended maximum when cathode bias is used; without cathode bias, the grid resistance should not exceed 50,000 ohms.

As a <u>Class B modulator or audio-</u> frequency amplifier, two 891-R's are used in a balanced circuit, each tube amplifying only half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude It should be designed to is small. handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as a plate-to-plate load of 8400 ohms in the Class B stage for the 10.000-volt conditions. It should have a core sufficiently large to avoid saturation effects which would impair the quality of the output. Grid bias for the 891-R in Class B a-f service should be obtained from a generator or other d-c source of excellent regulation. It should not be obtained from a high-resistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation. Each grid circuit should be provided with a separate grid-bias adjustment in order to balance the grid and plate current.

As a <u>Class B radio-frequency ampli-</u> fier, the 891-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS. In Class B r-f service, the plate is supplied with unmodulated d-c voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages and the power output is proportional to the square of the grid-excitation voltage. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. Grid bias should be obtained from a generator, from a rectifier of excellent regulation, or from a cathode-bias resistor, suitably bypassed for audio and radio frequencies.

As a plate-modulated Class C radiofrequency amplifier, the 891-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias for this service may be obtained from a grid leak of 20,000 ohms, or from a suitable combination of either grid leak and fixed supply, or grid leak and cathode-bias resistor. The cathode-bias resistor should be suitably by-passed for audio and radio frequencies. The combination-bias methods are particularly desirable because distortion effects are minimized by bias-supply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

As a Class C radio-frequency amplifier and oscillator for telegraph service, the 891-R may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Grid bias for this service may be obtained from a grid leak of 20,000 to 30,000 ohms, from a generator, from a rectifier, or from a cathode-bias resistor (preferably variable) suitably by-passed for radio frequencies. The cathode-bias method is advantageous due to the fact that the grid bias is automatically regulated in direct proportion to the sum of the plate and the grid current and that there is little chance of the plate current becoming dangerously high, even if the r-f grid excitation is removed. Grid-leak bias has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. The use of protective devices (see INSTALLA-TION) designed to open the plate circuit on excessive rises of plate current minimizes danger of overload. Since grid-bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.

The grid circuit must be so arranged that it is impossible for high voltages to be established between the grid and filament at any frequency except the fundamental in order to prevent parasitic oscillations. The grid voltage at the fundamental frequency should be sufficient to provide only the necessary grid excitation for the tube. Because of the high current carried by the grid lead and its adjoining circuit, heavy conductors carefully connected should be used.

The d-c grid current and the r-f grid current should never exceed the values given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Operating values will vary with individual tubes and circuits.

The 891-R may be operated at maximum ratings in all classes of service at frequencies up to 1.5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS.) The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used at 1.5, 7.5, and 20 mc for any class of service. Special attention should be given to adequate cooling and the maintenance of normal ambient temperatures at these frequencies.

If more radio-frequency power output 1. required than can be obtained from a single 891-R, the push-pull or the parallel connection may be used. For example, two tubes connected in pushpull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the

\*See Description and Rating Sheet

push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube. The pushpull arrangement has the advantage of balancing the circuit with respect to ground and of canceling the even-order harmonics from the output. When the parallel connection is used, a noninductive resistor of 10 to 100 ohms and a choke coil or other suitable network should be placed in series with the grid lead of each tube, as close to the tube as possible, in order to prevent parasitic oscillations. With either connection, it is preferable to provide for a separate grid-bias or grid-excitation adjustment in order to balance the grid and the plate current.

<u>Careful handling and conservative</u> <u>operation of the 891-R will result in</u> <u>longer life and more satisfactory per-</u> <u>formance</u>.



# FILAMENT CONNECTIONS

WITH D-C EXCITATION



A = 60 AMPERES

WITH SINGLE-PHASE A-C EXCITATION



V = 22 VOLTS A = 60 AMPERES



# GENERAL B ELECTRIC SCHENECTADY, N.Y.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

7-43 (2500) Filing No. 8850 Superseding GEH-1122A

PRINTED

# **ELECTRONICS DEPARTMENT**

GENERAL & ELECTRIC

# Transmitting Tube GL-891—Installation and Operation

# Installation

The handling of the 891 in transportation and storage requires great care, since the tube may be permanently damaged if subjected to sudden jars. Each 891 is suspended within its shipping crate so that it will not come in contact with the sides of the crate during shipment. The tube should be stored in the crate with the filament end up and should be protected from moisture and extreme temperature changes. Furthermore, while the tube is being handled, it should be kept in a vertical position with the filament end up. Under no circumstances should crated tubes be piled on top of one another. The weight of an 891, crated for shipment, is approximately 10 pounds; uncrated, approximately 3 pounds.

It is recommended that the tube be tested upon receipt in the equipment in which it is to be used. Before the tube is placed in operation, care should be taken that the glass bulb, and particularly the entrant glass area around the filament leads, is free from foreign matter. These leads become so hot during operation that any paper, shavings, or excelsior, not removed from the stem, may become charred and cause puncture of the bulb. An air blast is recommended for removing such material.

The mounting of the 891 requires the use of the water jacket, UT-1285-A. The tube should be supported in a vertical position with the glass end up. If the 891 is subjected to appreciable vibration in service, it is advisable to support the water jacket by springs. When concrete basework is provided for the transmitter and when machines or other sources of vibration are not present, it is unnecessary to use spring suspension. The installation of all wires and connections must be made so that they will not be close to or touch the bulb. This precaution is necessary in order to avoid almost certain puncture of the glass from corona discharge.

The 891 should be placed in its water jacket very carefully and then firmly fastened. It is advisable to secure the tube in its jacket before mak-

the jacket-clamping device is tightened, the clamping screws must seat properly on top of the tube flange. Proper seating will be obtained by the use of the standard gasket, PX-1178, which is supplied with each tube. The clamping screws should be tightened securely with the fingers. Do not tighten with a wrench, pliers or any other tool. Be sure that the ears of the clamping screws do not protrude above the top of the corona shield. The ears are mounted on pins so that they can be swung down out of the way. If these precautions are not taken, the tube may be ruined by a glass crack caused by improper seating of the clamps, or by puncture of the bulb by corona discharge from the ears of the clamping screws. The grid and filament leads should not be taut, but should allow for some movement in order to avoid placing a strain on the glass Before a readjustment of either bulb. the tube or its jacket is made, the leads should be disconnected. The retaining lugs, threads, and moving parts of the jacket may be kept from rusting and sticking by coating them with a thin film of oil or oildag. Do not use an adhesive to seal the jacket against leaks because any sticking of the plate in the jacket may cause the tube to be damaged during its removal.

ing the electrical connections. When

When the 891 is removed from its water-cooling jacket, first be sure that the temperature of the grid and filament is below red heat. Then completely release the locking device and carefully remove the tube. Should sticking occur, twist the tube gently back and forth, at the same time raising it carefully. Never use force when the tube is removed.

The water-cooling system for the plate of the 891 consists, in general of a source of cooling water, a water jacket insulated from ground, and a feedpipe system which carries the water to and from the jacket. A pump is used to circulate the water through the system. Rubber hose of good insulating quality, or ceramic coil units, should be employed to carry the water from a grounded point in the pipe to and from the jacket. Installation requirements

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com for the rubber hose and ceramic coil The length of the units are the same. inlet and outlet sections of the hose or tubing should be not less than 15 feet each so that the water column contained therein has a resistance high enough to reduce the leakage current to a negligi-Proper functioning of the ble value. water-cooling system is of the utmost importance. Even a momentary failure of the water flow will damage the tube. In fact, without cooling water, the heat of the filament alone is sufficient to It is necessary, cause serious harm. therefore, to provide a method for preventing operation of the tube during This may be accomsuch an emergency. plished by the use of water-flow circuit breakers, or interlocks, which open the circuit breakers in the primary circuits of the filament and plate power transformers whenever the water flow is insufficient or ceases. An outlet-water thermometer and a water-flow meter are necessary to determine the water temperature and the water flow, respectively. A combination interlock and flow meter may be used if desired. With a properly designed and clean water jacket, a water flow of 3 to 8 gallons per minute, depending on operating conditions, is required to cool the plate. The cooling water should flow in at the bottom of the jacket and out at the top, in order to avoid air traps in the jacket. The temperature of the water at the jacket outlet must not exceed 70 C. The water must not be allowed to boil and the flow must be great enough to prevent the formation of steam bubbles on the plate surface. The formation may occur even at a lower temperature due to the focus-It may be deing effect of the grid. tected by the use of an improvised stethoscope which may consist of six feet of high-grade insulating tubing. The stethoscope is pressed against the jacket at various points while suitable listening observations are made. The test for boiling water should be made each time the tube is adjusted.

Distilled water is recommended for cooling because it greatly reduces the probability of scale formation. Scale is usually very hard and appears as a light-colored deposit on the plate during life. Scale prevents adequate cooling of the tube because it hinders proper transfer of heat from the plate to the water. The mineral content, flow, heat dissipation, temperature, etc., of undistilled water is so varied that no to prevent recommendations specific scale can be made. In any case, a sample of the cooling water should be analyzed before plans are made for the water system. In general, water which shows a hardness greater than 10 grains per gallon, or a resistivity of less than 4000 ohms per cubic centimeter, should not be used. Regardless of the kind of water used, the system should be kept free from accumulation of foreign material. A 10 per cent solution of hydrochloric acid will ordinarily dissolve scale in emergency cases. After such treatment, the plate should be carefully rinsed. Since the tube must be removed from its jacket for this treatment and since frequent removals are objectionable because of danger from accidental breakage, the best insurance against tube failure due to scale is the complete elimination of the cause of scale.

The tungsten filament of the 891 is of the double-unit type. One end of each unit is brought out of the tube to a common terminal. The other two ends are brought out to separate terminals. The common terminal of the base is larger in diameter than the two end terminals. By proper filament connection, this arrangement makes possible the operation of the filament from two-phase and single-phase alternating current, as well as from direct current. See page 7. For normal operation, each filament unit requires a filament voltage of 11 volts at a current of 60 amperes. The grid and plate returns should be connected to one side of the filament supply when direct current is used, to the center tap of the filament transformer when a single-phase a-c supply is used, and through a balancing resistor to the midpoint of each secondary coil of a twophase transformer when a two-phase a-c supply is used. When direct current is used, the polarity of the filament leads should be reversed every, 500 hours of The filament should be opoperation. erated at constant voltage rather than constant current and must be allowed to reach at least 80 per cent normal voltage before plate voltage is applied.

Intermittent power supply interruptions may be allowed provided the time off does not exceed one second. If the tube is to be used at relatively low output, the plate current will be less than normal, requiring less than normal emission of the filament. The filament, therefore, may be operated at a voltage slightly lower than rated voltage, giving longer life. The permissible reduction in filament voltage may be checked by reducing the filament voltage with the transmitter under normal operation to a value where reduction in output or increase in distortion can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament supply voltage. Care must be taken that sufficient emission is provided. Otherwise, instability of operation or excessive distortion may be experienced, or the rated plate dissipation of the tube may be exceeded. From the viewpoint of tube life it is usually economically advantageous to provide good regulation of the filament voltage. For example, if the filament is operated continuously at 6 per cent above normal voltage, the evaporation life will be reduced to approximately one half. The filament voltmeter should be connected to indicate voltage at the filament terminals. Since the filament current of the 891 is very high, the filament connectors should be large and make good contact. The filament base of the 891 should not be connected to ground or to any part of the circuit.

A filament starter should be used to raise the filament voltage gradually and to limit the high initial rush of current through the filament when the circuit is first closed. The starter may be either a system of time-delay relays cutting resistance out of the circuit, a high-reactance filament transformer, or a simple rheostat. Regardless of the method of control, it is important that the filament current per unit never exceed, even momentarily, a value of 120 amperes. Whenever the filament voltage is turned off, it is advisable to reduce the voltage gradually in steps over a period of two to three minutes. This precaution is necessary to avoid undue mechanical tension and premature filament breakage caused by the difference in cooling rate of the heavy filament center post and the thin filament strands.

The plate circuit should be provided with a time-delay relay which will prevent the application of plate voltage until the filament has reached normal operating temperature.

When the apparatus in which the tube is used is to be idle for periods not exceeding 2 hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately 80 per cent of the rated value during "stand-bys."

Overheating of the 891 by severe overload may impair its vacuum. Unless the overload has liberated a large amount of gas, it is often possible to degasify the tube by operating it as an r-f power amplifier or oscillator at reduced plate voltage. The first step in the process should be a short period of operation at a plate voltage of 5000 volts or less. The voltage may then be raised in steps of about 2000 volts until the normal operating voltage is attained. At each new voltage, the tube should be operated long enough to insure the attainment of stable conditions.

The plate dissipation of the 891 should never exceed the values given under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS. The approximate plate dissipation values may be calculated from the following expression:

Pkilowatts =  $\frac{n(t_o - t_i)}{4}$ 

In which  $(t_1)$  is the known initial temperature of the cooling water in centigrade degrees  $(t_0)$  the temperature of the water at the water jacket outlet in centigrade degrees, and (n) the number of gallons of water per minute of flow.

In order to prevent excessive plate-current flow and the resultant overheating, the ground lead of the plate circuit should be connected in series with the coil of an instantaneous overload relay. This relay should be adjusted to open the circuit breakers in the primary of the rectifier transformer at slightly higher than normal plate current. The total time required for the operation of the relay and circuit breakers should be about one-tenth second and not more than one-sixth second. A voltage-dropping resistor should be connected permanently in series with the plate lead of each tube for protection of the tube during the time required for the protective relay and circuit breaker to act. The minimum value of this resistor which will give adequate protection with minimum power loss is as follows:

| SERIES RE-<br>SISTOR                | 25 | 50 | 200 | 250 | 275 | 300  | Ohms           |
|-------------------------------------|----|----|-----|-----|-----|------|----------------|
| MAX POWER<br>OUTPUT OF<br>RECTIFIER | 16 | 40 | 100 | 250 | 640 | 1600 | Kilo-<br>watts |

Precautions must be taken so that no high capacitance is connected directly across the tube in any manner such that a disturbance within the tube will discharge appreciable energy from the capacitor.

When more than one 891 is used in a circuit, a minimum space allowance of at least 4 inches between tubes should be provided for adequate ventilation. Free circulation of cool air around the glass bulb should be maintained. High-temperature air from other apparatus in the circuit should be prevented from circulating arcund the tubes. The necessity for generous spacing between tubes and the free circulation of cool air becomes of greater importance when the 891 is used at the higher frequencies.

Suitable meters should be provided for the reading of filament voltage, d-c plate voltage, d-c grid voltage, d-c plate current, and d-c grid current, as well as for the recording of tube life When the 891 is (hours of operation). operated at the higher radio frequencies, it is also necessary to employ a radiofrequency ammeter in the grid circuit. In addition to the use of meters for indicating suitable operating conditions, their use is also of value in making initial transmitter adjustments. However to assist in the making of final adjustments for optimum performance, it is recommended that a cathode-ray oscillograph be used. Under no conditions should the maximum values given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS be exceeded.

Heavy leads and conductors together with suitable insulation should be used in all parts of the r-f plate tank circuit so that the losses due to the r-f voltages and currents may be kept at a minimum. Since proper circuit design becomes very important at the higher frequencies, it is essential that short, heavy leads and circuit returns are used in order to minimize lead inductance and losses.

When an 891 is first placed in operation, care should be taken to see that the water-cooling system is functioning.properly. The tube should then be operated without plate voltage for 5 minutes at rated filament voltage. After this initial preheating schedule, the plate voltage can be applied. Start with not more than one-half the usual operating voltage and then carefully increase it in steps of about 2000 volts over a period of approximately 15 minutes to the desired value. The tube should then be operated under the normal load conditions for a period of not less than two hours. The plate voltage is usually varied by means of primary taps on the plate transformer. The platecircuit relay should be open when the transformer primary taps are changed in order to avoid dangerous voltage surges. It is recommended that every three months spare tubes be given the preheating and initial operation schedule as discussed above. This will insure that only good tubes are carried in stock.

In order that the maximum ratings given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus, must be determined. An average value of plate- and filament-supply voltage should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced to one-half the rated value to prevent damage to the tube or associated apparatus. After correct adjustment has been made with the tube operating smoothly and without excessive heating, the plate voltage may be raised in several steps to the desired value. Adjustments should be made at each step for optimum operation.

Protective devices are essential for the 891, as in the case of other power equipment of high capacity, and are summarized as follows: Water-circuit breakers, or interlocks which open the circuit breakers in the primary circuits of the filament and plate power transformers, are necessary for protecting the tube when the cooling system fails. A time-delay relay should be used in the plate circuit to prevent application of plate voltage until the filament has reached normal operating temperature. The ground lead of the plate circuit should be provided with an instantaneous overload relay to prevent excessive plate current and tube overheating. In addition to the latter precaution, a voltage-dropping resistor should be connected permanently in series with the plate lead to protect the tube during the time required for the protective relay and circuit breaker to act.

The rated plate voltage of the 891 is extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which are at a high potential above ground, should be enclosed in a protective housing. This housing may be of fibre or similar insulating material. If metal housing is used, care should be taken that it does not absorb excessive power. The protective housing should be designed with automatic interlocks so that the operating personnel cannot possibly come in accidental contact with any high-voltage point in the electrical system. These interlock devices should function to break the primary circuit of the plate-voltage supply when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

#### Operation

As a <u>Class A audio-frequency ampli-</u> fier or modulator, the 891 is capable of delivering approximately 2000 watts of audio-frequency power with very low distortion. Typical operating conditions are shown under MAXIMUM RATINGS and TYP-ICAL OPERATING CONDITIONS. Grid bias for a single tube in Class A service may be obtained from a separate voltage source or by means of a cathode-bias resistor shunted by a condenser large enough to minimize degenerative effects at low audio frequencies.

If more audio output is desired than can be obtained from a single 891, two or more 891's may be operated in parallel or in push-pull. For example, two tubes in parallel provide twice the output of a single tube without an increase in grid-signal voltage. The push-pull connection will give slightly more than double the power output of a single tube but requires twice the gridsignal voltage. The push-pull arrangement has the advantage of balancing out the even-order harmonics from the output. If the tubes are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with each grid lead, as close to the tube as possible, in order to prevent parasitic oscillations. When the parallel or the push-pull connection is used, each grid circuit should be provided with a separate grid-bias adjustment in order to balance the grid and plate currents.

In cases where the input circuit of the 891 is resistance-coupled or impedance-coupled, the resistance in the grid circuit should not be made too high. A resistance value of 100,000 ohms for one 891 is the recommended maximum when cathode bias is used. Without cathode bias, the grid resistance should not exceed 50,000 ohms.

As a Class B modulator or audiofrequency amplifier, two 891's are used in a balanced circuit, each tube amplifying only half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as a plate-to-plate load of 10,000 ohms in the Class B stage for the 12,500-volt conditions. It should have a core sufficiently large to avoid saturation ef-



fects which would impair the quality of the output. If the secondary is to carry the d-c plate current of the modulated amplifier, the core should be made larger and include an air gap to compensate for the d-c magnetization current. Grid bias for the 891 in Class B a-f service should be obtained from a generator or other d-c source of excellent regulation. It should not be obtained from a high-resistance supply such as a grid leak, nor from a rectifier, unless the latter has exceptionally good voltage regulation. Each grid circuit should be provided with a separate grid-bias adjustment in order to balance the grid and plate currents.

As a <u>Class B radio-frequency ampli-</u><u>fier</u>, the 891 may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. In Class B r-f service, the plate is supplied with unmodulated d-c voltage. The grid is excited by r-f voltage modulated at audio-frequency in one of the preceding stages and the power output is proportional to the square of the grid-excitation voltage. Thus, the plate dissipation is greatest when the carrier is unmodulated. Grid bias should be obtained the same as for Class B a-f service.

As a plate-modulated Class C radiofrequency amplifier, the 891 may be used as shown under MAXIMUM RATINGS and TYPI-CAL OPERATING CONDITIONS. Grid bias for this service may be obtained from a grid leak of 20,000 to 30,000 ohms, or from a suitable combination of either grid leak and fixed supply, or grid leak and cathode bias resistor. The cathode-bias resistor should be suitably by-passed for audio and radio frequencies. The combination-bias methods are particularly desirable because distortion effects are minimized by bias-supply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

As a Class C radio-frequency amplifier and oscillator for telegraph service, the 891 may be used as shown under MAXIMUM RATINGS and TYPICAL OPERATING Grid bias for this service CONDITIONS. may be obtained from a grid leak of 20,000 to 30,000 ohms, from a generator, from a rectifier, or from a cathode-bias resistor (preferably variable) suitably by-passed for radio frequencies. The cathode-bias method is advantangeous due to the fact that the grid-bias is automatically regulated in direct proportion to the sum of the plate and the grid current and that there is little chance of the plate current becoming dangerously high, even if the r-f grid excitation is removed. Grid-leak bias has the advantage of simplicity and of automatically biasing the grid in proportion. to the excitation voltage available. The use of protective devices (see INSTALLA-FION) designed to open the plate circuit on excessive rises of plate current min-Imizes danger of overload. Since gridbias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.

The grid circuit, in order that parasitic oscillations may be prevented,

must be so arranged that it is impossible for high voltages to be established between the grid and filament at any frequency except the fundamental. The grid voltage at the fundamental frequency should be sufficient to provide only the necessary grid excitation for the tube. Because of the high current carried by the grid lead and its adjoining circuit, heavy conductors carefully connected, should be used.

The <u>d-c</u> grid current and the <u>r-f</u> grid current should never exceed the values given under MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS. Operating values will vary with individual tubes and circuits.

The 891 may be operated at maximum ratings in all classes of service at frequencies up to 1.5 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under MAXIMUM RATINGS and TYPICAL OPER-ATING CONDITIONS). The tabulation\* shows the highest percentage of maximum plate voltage and power input that can be used at 1.5, 7.5 and 20 mc for any class of service. Special attention should be given to adequate cooling and the maintenance of normal ambient temperatures at these frequencies.

With the grid connected to the plate through the shortest possible con-

\* See Description and Rating Sheet

nection, the resonant frequency of the grid-plate circuit is approximately 60 megacycles.

If more radio-frequency power output is required than can be obtained from a single 891, the push-pull or the parallel connection may be used. For example, two tubes connected in pushpull or in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation voltage necessary to drive a single tube. With either connection the driving power required is approximately twice that for single-tube operation while the grid bias is the same as for a single tube. The pushpull arrangement has the advantage of cancelling the even-order harmonics from the output and of simplifying the balancing of high-frequency circuits. When two or more 891's are operated in parallel, a noninductive resistance of 10 to 100 ohms should be placed in series with the grid lead of each tube, as close to the tube as possible, in order to prevent parasitic oscillations. With either connection, each grid circuit should be provided with a separate gridbias adjustment in order to balance the grid and plate current.

<u>Careful handling and conservative</u> operation of the 891 will result in longer life and more satisfactory performance.

# FILAMENT CONNECTIONS

WITH D-C EXCITATION



TERMINAL

V = 22 VOLTS A = 60 AMPERES WITH SINGLE - PHASE A-C EXCITATION



V = 22 VOLTS A = 60 AMPERES WITH TWO-PHASE A-C EXCITATION



A = 60 AMPERES

7





. .

www.SteamPoweredRadio.Com

GEH-1127B



# Transmitting Tube GL-814 - - Installation and Operation

Installation

# MECHANICAL

Mountings must be of good quality and should be so installed as to minimize danger from impact. If the set is subject to vibration a shockabsorbing suspension must be employed.

#### COOLING

All apparatus should be arranged to allow free circulation of air around the pliotron. The bulb becomes very hot during operation and, therefore, should neither come in contact with any metallic object nor be subjected to drops or spray of liquid.

Sets using more than one tube should provide adequate spacing between tubes so that adjacent portions of the bulbs do not operate appreciably hotter than the other sections.

## ELECTRICAL

To avoid danger of corona discharge all wires and connections should be made to allow several inches of free space around the pliotron. For tubes using a metal base the metal shell must not be connected to any part of the circuit.

<u>The filament</u> should be operated preferably from an a-c source, although a d-c supply may be used. The filament voltmeter should be connected to indicate the voltage at the filament terminals. The filament supply should be designed to allow operation at rated filament voltage. The filament voltage should not vary more than  $\pm 5\%$  from the rated value. The filament transformer shall have good regulation and should be designed for at least 30 per cent above rated filament wattage.

When the tube is used in intermittent service the filament voltage may be removed for stand-by periods greater than 15 minutes. There should be no reduction of filament voltage for periods of less than five minutes. The filament voltage may be reduced to 80 per cent during periods greater than five minutes if desired.

Overheating by severe overload may decrease filament emission. Unless the overload has liberated a large amount of gas, the activity of the filament usually can be restored by operating the filament at rated voltage for 10 minutes or more with no voltage on the plate or grid. This process may be accelerated by increasing the filament voltage to 20 per cent above the thormal value (not higher) for a few minutes.

The <u>beam-forming</u> plates of the 814 are connected to a separate base pin. They should always be operated at zero potential with respect to

+Note: The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube. the filament; never positive. When the filament is operated from an a-c supply the beam-forming plates should be connected to the midpoint of the filament circuit. When the filament is operated from a d-c supply they should be connected to the negative end of the filament.

The <u>grid-circuit</u> and <u>plate-circuit</u> return leads should be connected to the center tap of the filament-transformer secondary. When d-c filament excitation is used the return leads from the grid and plate circuits should be connected to the negative filament terminal.

The screen voltage may be obtained from a separate source, from a voltage divider, or from the plate supply through a series resistor, depending upon the service in which the tube is used (see OPERATION). When the screen voltage is obtained from a separate source, or from a voltage divider, plate voltage should be applied before or simultaneously with the screen voltage. Otherwise, with voltage on the screen only, the screen current may rise high enough to cause excessive screen dissipation. When screen-voltage regulation is not an important factor, the series-resistance method for obtaining screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. The screen should never be allowed to attain a temperature at which it will show color.

The screen current is a very sensitive indication of the plate-circuit loading and rises excessively (often to the point of damaging the tube) when the amplifier is operated without load. Therefore, care should be taken when tuning an 814 under no load conditions in order to prevent exceeding the screen-input rating of the tube.

A protective device, such as a high-voltage fuse, should be used to protect both the plate and screen against overloads. When a voltage divider or a resistor in series with the plate supply is used for obtaining the screen voltage, the protective device should be placed in the common positive high-voltage lead. It should remove the high-voltage supply when the plate current reaches a value 50 per cent greater than normal. When the screen voltage is obtained from a separate source or from a voltage divider of good regulation, a protective device should be placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value 50 per cent greater than normal.

An ammeter in the plate circuit of each tube should be connected so that the direct-plate current may be checked regularly.

The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.

Adequate shielding and isolation of the input circuit and output circuits are necessary if optimum results are to be obtained. In some cases neutralization may be necessary to prevent feedback. The impedance between screen and filament must be kept as low as possible by the use of a by-pass capacitor. The capacitance should be approximately 0.01 uuf; large values may cause excessive a-f by-passing, while small values may cause excessive r-f feedback from plate to control grid, depending upon circuit layout, frequency, and gain.

When a new circuit is tried or when adjustments are made, the screen and plate voltages should be reduced in order to prevent damage to the tube or associated apparatus in case the circuit adjustments are incorrect. It is advisable to use a protective resistance of about 10,000 ohms, total, in series with the screen lead and a protective resistance of 9000 ohms in series with the high-voltage plate lead during such adjustments. In rating pliotrons certain values are given as maximum; that is, the values beyond which it is unsafe to go from the viewpoint of life and performance. In order not to exceed the †maximum ratings, changes in plate and filament voltage caused by line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. Then an average value of plate voltage should be chosen so that under the usual operating conditions the maximum ratings will not be exceeded.

IN TRYING OUT A NEW CIRCUIT OR WHEN ADJUSTMENTS ARE BEING MADE THE PLATE VOLTAGE SHOULD BE REDUCED IN ORDER TO PREVENT DAMAGE TO THE PLIOTRON OR ASSOCIATED APPARATUS IN CASE THE ADJUSTMENTS ARE INCORRECT.

### Operation

# GENERAL

Maximum ratings and typical operating conditions for each recommended class of service are given on the Description and Rating Sheet covering the individual type of tube. The typical values given must not be considered as ratings, because the tube may be used at any suitable conditions within the maximum ratings.

### CLASS B RADIO-FREQUENCY AMPLIFIER

In Class B radio-frequency service the plate is supplied with unmodulated direct voltage, and the grid is excited by modulated r-f voltage. It is important to note that in this service the plate dissipation is greatest when the carrier is unmodulated. Therefore, the circuit should be adjusted so that, without modulation, the plate loss will not exceed the +maximum rating.

Grid bias for Class B a-f or r-f service should be obtained from a battery or other d-c source of good regulation. It should not be obtained from a high-resistance supply such as a grid leak. The screen voltage should be obtained from a separate source or from a voltage divider of good regulation connected across the plate supply.

# CLASS C RADIO-FREQUENCY POWER AMPLIFIER - GRID MODULATED

In grid-modulated Class C r-f telephone service the 814 is supplied with unmodulated r-f grid voltage and with d-c grid bias which is modulated at audio frequencies. Grid bias should be obtained from a fixed supply. The screen voltage should be obtained from a separate source or from a voltage divider of good regulation. The audio power required in this service is very small, being sufficient only to meet the peak grid-power requirement of the Class C amplifier on the positive crest of the a-f input signal.

### CLASS C RADIO-FREQUENCY POWER AMPLIFIER - PLATE MODULATED

In this type of service the plate supply voltage is modulated so that the tube output is modulated radio frequency.

The maximum ratings and typical operating conditions given in the +Technical Information are such that a modulation factor up to 1.0 may be used. When a lower value of modulation is used, the plate dissipation allowed may be increased, but should be limited so that with the modulation

+Note: The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.
sustained at its peak value the plate loss will not exceed the plate dissipation rating.

The screen voltage should preferably be obtained from a fixed supply. The screen voltage should be modulated simultaneously with the plate voltage and in such a manner that the ratio of screen voltage to plate voltage remains constant. Modulation of the screen voltage can be accomplished either by connecting the screen to a separate winding of the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method an a-f choke of suitable impedance for low frequencies should be connected in series with the screen supply lead. Grid bias may be obtained from a grid resistor or from a combination of either grid resistor and fixed supply or grid resistor and cathode resistor. The combination method of grid resistor and fixed supply has the advantage not only of protecting the tube from damage through loss of excitation but also of minimizing distortion by means of bias-supply compensation.

#### CLASS C RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR

In telegraph service the plate input power is keyed, i.e., is on and off alternately in accordance with the characters of some code. During the "key-down" periods the tube functions as an unmodulated radio-frequency power amplifier. The tube may be used also as an amplifier or oscillator without keying. In both types of service the ratings given are for "keydown" conditions.

Certain methods of modulation may be applied to this class of service provided the modulation is essentially negative and the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

Grid bias for Class C service may be obtained from a grid leak, from a battery, from a rectifier of good regulation, or from a self-biasing resistor by-passed with a suitable capacitor. With the grid-leak method the grid excitation must not be removed without also removing the plate and screen voltages. Grid-bias values are not particularly critical, and correct circuit adjustment may be obtained with widely different values.

When a preceding stage is keyed, sufficient fixed bias should be used to maintain the plate current at a low value when the key is up. The screen voltage should be obtained from a fixed low-voltage source if the 814 or a preceding stage is keyed. The regulation of this source need be only good enough to prevent the screen voltage, under key-up conditions from rising higher than twice the maximum screen-voltage rating.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

1-42 (5M) Filing No. B8850

Supersedes GEH-1127A

# GENERAL 🍪 ELECTRIC

### **Transmitting Tube GL-829 - - Installation and Operation**

#### Installation

The 829 may be mounted by means of a special socket having floating contacts, such as the Type UT-106. The plate terminals take clips with flexible leads. Flexible leads are necessary so that normal expansion will not place a strain on the glass at the seals. Each lead should be connected to its clip before the clip is placed on the plate terminal. Connections should never be soldered directly to the tube terminals because the heat of the soldering operation may crack the lead seals. The 829 may be mounted in a vertical position with the plate terminals either up or down. It may also be mounted in a horizontal position provided the plane of each plate is vertical (on edge).

The <u>bulb</u> becomes very hot during continuous operation of the tube so that forced air cooling is recommended.

The <u>heaters</u> of the 829 are connected in series within the tube. The center connection is brought out of the bulb to a separate pin terminal to permit either series operation from a 12.6-volt supply or parallel operation from a 6.3-volt supply. Either an a-c or a d-c supply may be used. Under any condition of operation, the heater-voltage should not deviate more than plus or minus 5 per cent from the rated value.

The <u>cathodes</u> of the 829 are connected together within the tube. The cathode circuit should be connected to the electrical midpoint of the heater circuit when the heaters are operated from an a-c supply, or to the negative heater-supply lead when the heaters are operated from a d-c source. In circuits where the cathode is not directly connected to the heater, the potential difference between them should not exceed 100 volts. If the use of a large resistor is necessary between heater and cathode in some circuits, it should be bypassed to avoid the possibility of hum.

The <u>plates</u> of the 829 show no color when the tube is operated at its maximum plate-dissipation rating.

The <u>screens</u> of the 829 are connected together within the tube, and they are bypassed by means of a 65 µµf condenser connected inside the tube between the screens and cathodes. Screen voltage may be obtained from a separate source, from a voltage divider, or from the plate supply through a series resistor. The choice of method depends on the service in which the tube is used (see OPERATION). When the screen voltage is obtained from a separate source, or from a voltage divider, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screens only. the screen current may rise high enough to cause excessive screen dissipation. When screenvoltage regulation is not an important factor, the series resistance method for obtaining screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. A d-c milliammeter should be used in the screen circuit so that the screen current can be measured and the d-c power input to the screen determined. The screens should not be allowed to attain a temperature corresponding to more than a barely perceptible red color. This temperature corresponds to the screen-input values shown under TECHNICAL INFORMATION.

It is, perhaps, not too well known that the screen current is a very sensitive indication of plate-circuit loading and that screen current rises excessively (often to the point of damaging the tube) when the amplifier is operated without a load. Therefore, care should be taken when tuning an 829 under no-load conditions in order to prevent exceeding the screen-input rating of the tube.

A protective device, such as a highvoltage fuse, should be used to protect both the screens and plates against overloads. When a bleeder resistor of poor regulation or a series resistor is used for obtaining the screen voltage, this device should be placed in the common positive high-voltage supply lead. It should remove the high-voltage supply when the d-c plate current reaches a value 50 per cent greater than normal. When the screen voltage is obtained from a separate source or from a voltage divider of good regulation, a protective device should also be

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com placed in the screen-supply lead. It should remove the screen voltage when the d-c screen current reaches a value of 50 per cent greater than normal.

<u>Shielding</u> of the r-f amplifier stage employing the 829 is required for stable operation. A convenient method of shielding is to insert the plate end of the tube through a hole in a metal plate so that the edge of the opening is in close proximity to the internal shield of the tube. An alternative shielding and mounting arrangement is to insert the grid end of the tube through a hole in the shield and then clamp a ring or cup to the chassis so as to complete the shielding and lock the tube in the mounting.

R-f by-passing of the 829 at its terminals is necessary in order to realize the full capabilities of the tube at the ultra-high frequencies. Conventional bypassing methods and grounding are not adequate. One convenient method of by-passing is to use ribbon heater and screen leads to the tube terminals and to insulate the leads from the external shield plate by means of mica spacers to form by-pass condensers right at the tube terminals. Tt. is important that the grid-, plate-, and screen-circuit returns are made to the common cathode connection in order to avoid r-f interaction through common return circuits. It may also be advisable in some applications to supplement the action of the by-pass condensers by r-f chokes placed close to the condensers in the voltage supply leads.

In order that the maximum ratings are not exceeded, changes in electrode voltages due to battery- or line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of voltage for each electrode should then be determined. An average value of voltage for each electrode should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltage. This may be done conveniently by means of a protective resistance of about 2000 ohms (total) in series with the screen lead and a protective resistance of about 2000 ohms in series with the high-voltage supply lead.

#### Operation

In grid-modulated Class C telephone service, the 829 is supplied with unmodulated r-f grid excitation voltage and with a d-c grid bias which is modulated at audio frequencies. Grid bias should preferably be obtained from an un-by-passed cathode resistor, although it may also be obtained from a fixed supply or a grid leak. The plates are supplied with unmodulated d-c voltage. The audio power required in this service is very small and need be sufficient only to meet the peak power requirement of the grids of the Class C amplifier on the positive crest of the input signal. The actual peak value is generally never more than 0.15 watt. The screen voltage should be obtained from a separate source or from a voltage divider connected across the plate supply.

In plate-modulated Class C r-f amplifier service, GL-829 can be modulated 100 per cent. The screen voltage should preferably be obtained from a voltage-dropping resistor in series with the modulated plate supply, although it may also be obtained from a fixed supply. In any case, the screen voltage must be modulated simultaneously with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed screen-voltage supply can be accomplished either by connecting the screen lead to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. Control-grid bias should be obtained from a grid leak or from a combination of either grid leak and fixed supply, or grid leak and cathodebias resistor. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion effects by biassupply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In <u>Class C r-f telegraph service</u>, the 829 may be supplied with screen voltage by any of the methods shown under INSTALLA-TION. When a series screen resistor is used, the regulation of the plate supply should be good enough so that the plate voltage will not exceed 600 volts under key-up conditions. Grid bias may be obtained by any convenient method.

# GENERAL B ELECTRIC SCHENECTADY, N.Y.

8-41 (2500) Filing No. B8850

www.SteamPoweredRadio.Com

# GENERAL 🛞 ELECTRIC

#### **Transmitting Tube GL-833-A - - Installation and Operation**

#### Installation

Terminal connections for the 833-A can be conveniently made with the special connectors, collectively identified as Type UT-103. The UT-103 consists of one polarized mounting, Type MI-7477, for the filament, and two connectors, Type MI-7478, for the grid and plate. One filament post of the 833-A is faced and permits only one-way insertion of the tube in the polarized mounting. This prevents accidental reversal of the grid and plate terminals. The 833-A may be operated in either a vertical or a horizontal position. When the tube is operated in a horizontal position, it should be mounted with the plate in a vertical plane (on edge). When the tube is subjected to vibration or shock, a shock-absorbing suspension must be used. The filament posts should make firm largesurface contact with their terminals to prevent heating by the filament current. Heavy, well-soldered leads should be used for the filament-circuit wiring.

Connections to the grid and plate terminals must be flexible enough so that they will not place a strain on the glass at the seals, yet heavy enough to carry the high circulating r-f current which flows at the very high frequencies. The connections should be fastened to the nickeled section of the terminal posts and not to the post shoulders. Special gridand plate-post connectors, such as the Type MI-7478, should be used when the tube is operated at frequencies above 15 megacycles. The connectors aid in cooling the terminal posts and their seals. The leads should be fastened to the connectors before they are placed on the terminal posts. If the leads are soldered to the connectors, a hard type of solder should be used. This solder should remain firm at temperatures of 250 C or more. Never solder directly to the terminal posts as the heat of soldering may result in cracking of the seals. The grid- and plate-terminal posts should not be used to support coils, condensers, or other circuit parts.

Cooling requirements for the 833-A depend on the plate voltage and plate input for each class of service as indicated under MAXIMUM RATINGS. When the operating

conditions do not require forced-air cooling, provision should be made for adequate free circulation of air around the tube. When the operating conditions are such as to require forced-air cooling (as shown in tabulated ratings), an air flow of 40 cubic feet per minute is required. The stream of air should be directed vertically downward on the top of the bulb (between the grid seal and the plate seal) by a nozzle having a diameter of about 2 inches. With forced-air cooling, the temperature of the bulb surface between the grid seal and the plate seal must not exceed 145 C. Care should be taken that the bulb does not come in contact with any metallic object. The installation of all wires and connections should be made so that they will not be close to or touch the bulb. This precaution is necessary to avoid puncture of the bulb due to peak voltage effects.

The filament of the 833-A is of the thoriated-tungsten type. It may be operated either from an a-c or a d-c supply. A voltmeter should be permanently connected across the filament terminals to provide a ready check of the filament voltage. This voltage should not vary more than +5 per cent from the rated value; otherwise, a loss of emission may result. The filament should be operated at eighty per cent of normal filament voltage during stand-by periods of less than two hours and shut down entirely for longer periods. The circuit returns should be made to the negative filament terminal when a d-c supply is used, and to the center tap of the filament-transformer secondary when an a-c supply is used. The 833-A filament should be operated at constant voltage rather than constant current and must be allowed to reach normal operating temperature before other voltages are applied. Since the filament current of the tube is very high, the filament connectors should be large and make good contact.

The plate of the 833-A shows an orange-red color at the maximum platedissipation rating for each class of service.

Overheating of the 833-A by severe overload may decrease the filament emission. Filament activity can sometimes be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the grid or plate. This process may be accelerated by raising the filament voltage to 12 volts (not higher) for a few minutes. In order to prevent overheating due to improper circuit adjustment, to overloading, or to loss of grid bias, the positive plate-supply lead should be provided with a protective device, such as a high-voltage fuse or an overload relay. This device should instantly remove the plate voltage when the d-c plate current reaches a value 50 per cent greater than normal. In audio-frequency service, a spark gap with 3/32 inch spacing may be connected between the grid and one side of the filament to protect the tube against damage caused by excessive peak voltage.

In order that the maximum ratings given under CHARACTERISTICS will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated equipment must be determined. An average value of plate and filament voltage should then be chosen so that under the usual line-voltage variations the maximum rated voltage will not be exceeded.

WHEN A NEW CIRCUIT IS TRIED OR WHEN ADJUSTMENTS ARE MADE, THE PLATE VOLTAGE SHOULD BE REDUCED IN ORDER TO PREVENT DAMAGE TO THE TUBE OR ASSOCIATED APPARATUS IN CASE THE CIRCUIT ADJUSTMENTS ARE IN-CORRECT. IT IS ADVISABLE TO USE A PROTEC-TIVE RESISTANCE OF ABOUT 6500 OHMS IN SERIES WITH THE HIGH VOLTAGE LEAD DURING SUCH ADJUSTMENTS.

THE RATED PLATE VOLTAGE OF THIS TUBE IS HIGH ENOUGH TO BE DANGEROUS TO THE USER CARE SHOULD BE TAKEN DURING THE ADJUSTMENT OF CIRCUITS, ESPECIALLY WHEN THE EXPOSED CIRCUIT PARTS ARE AT HIGH D-C POTENTIAL.

#### Operation

The maximum plate-voltage values shown under CHARACTERISTICS may be used provided the plate current for each service is limited so that the respective maximum plate-input rating is not exceeded. Likewise, the maximum plate-current values may be used provided the plate voltage for each service is limited so that the respective maximum plate-input rating is not exceeded.

In Class B modulator or a-f service, two 833-A's are used in a balanced circuit, each tube amplifying half the time. The input transformer should be designed to give good frequency response when operated into an open circuit, such as that represented by the grid circuit of the Class B stage when the signal amplitude is small. It should also be designed to handle the required input power for a strong signal. The output transformer should be designed so that the resistance load presented by the modulated Class C amplifier is reflected as the correct plate-to-plate load in the Class B a-f stage. For example, for the 3000-volt condition, a plate-toplate load of 9500 ohms is required. If an output transformer efficiency of 90 per cent is assumed, two 833-A's operated under conditions shown for a 3000-volt plate supply are capable of modulating 100 per cent an input of approximately 2970 watts to a Class C r-f power emplifier. Since two 833-A's will modulate 2970 watts, a convenient Class C amplifier would be one operating at 6000 volts and 495 milliamperes. These conditions represent a resistance of approximately 12120 ohms. The ratio of the output transformer is then 12120 : 9500, or 1 to 1.13, step-up. The transformer should be designed with a core sufficiently large to avoid saturation effects which would impair the quality of the output. Grid bias should be obtained from a battery or other source of good regulation. It should not be obtained from a high-resistance supply such as a grid resistor, nor from a rectifier, unless the latter has exceptionally good voltage regulation.

In Class B r-f service, the  $\partial_{33}$ -A is supplied with unmodulated d-c plate voltage. The grid is excited by r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. Grid bias may be obtained from a battery, from a rectifier of good regulation, or from a cathode resistor, suitably by-passed for both audio and radio frequencies.

In plate-modulated Class C r-f service, the  $\delta_{33}$ -A may be supplied with grid bias from a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. The cathode resistor should be by-passed for both audio and radio frequencies. The combination method of grid resistor and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also minimizes distortion effects by bias-supply compensation. Grid bias is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In Class C r-f telegraph service, GL-833-A may be supplied with bias by any convenient method. When the 833-A is used in the final amplifier or a preceding stage of a transmitter designed for breakin operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at  $\varepsilon$  safe value. With plate voltage of 4000 volts, a fixed bias of at least -90 volts should be used.

If more r-f power output is required than can be obtained from a single 833-A. the push-pull or the parallel connection may be used. For example, two tubes connected in push-pull or parallel will give twice the power output of one tube. The perallel connection requires no increase in exciting voltage; the push-pull connection requires twice the r-f excitation necessary to drive a single tube. With either connection the driving power required is approximately twice that for single-tube operation while the grid bias is the same as that for a single tube. The push-pull arrangement has the advantage of cancelling the even-order harmonics from the output and of simplifying the balancing of high-frequency circuits. The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.



1-42 (3M) Filing No. B8850



# Transmitting Tube GL-866-A/866 - - Installation and Operation

The BASE pins of the 866-A/866 fit a standard 4-contact socket. The socket should be installed to hold the tube in a vertical position with the base down. The plate lead is brought out through a separate seal at the top of the bulb.

The CONDENSED-MERCURY TEMPERATURE of the 866-A/866 should be kept within the ranges shown under TECHNICAL INFORMATION. It is recommended that for the most satisfactory operation the condensed-mercury temperature be maintained at 40 + 5 C. This temperature can be measured with a thermocouple or a small thermometer attached with a minimum amount of putty at a point near the base end of the bulb. Lower than recommended condensed-mercury temperature raises the potential at which the tube starts to conduct and is unfavorable for long filament life. Higher than recommended condensed-mercury temperature decreases the potential at which the tube starts and is favorable for long filament life but reduces the peak inverse voltage which the tube can stand.

The COATED FILAMENT should be operated at the rated value of 2.5 volts under average operating conditions. The filament voltage, measured at the tube terminals, should not vary more than plus or minus 5 per cent from the rated value. This tolerance should include the effects of regulation caused by transmitter-modulation load as well as the normal power-Less than the recomsupply regulation. mended filament voltage may cause a high voltage drop with consequent bombardment of the filament and eventual loss of emission. Greater than the rated voltage will also shorten the life of the filament.

CAUTION SHOULD BE OBSERVED WHEN THE FILAMENT VOLTAGE IS MEASURED BECAUSE THE FILAMENT CIRCUIT IS AT HIGH D-C POTENTIAL.

The filament of the 866-A/866 should be allowed to come up to operating temperature before the plate voltage is applied. For average conditions, the delay should be approximately 30 seconds. If there is evidence of arcback in the tube, the time delay should be increased. In radio transmitters during "stand-by" periods, the filament should be kept at its rated voltage to avoid delay in "coming back." A protective relay having an obtainable delay period of one minute is desirable in the plate circuit to prevent automatically the application of plate voltage until the filament has reached operating temperature.

When an 866-A/866 is first placed in service, the filament should be operated at normal voltage for approximately 10 minutes without plate voltage in order to distribute the mercury properly. This procedure need not be repeated unless, during subsequent handling, the mercury is spattered on the filament and plate.

The 866-A/866 should be isolated from the transmitter as much as possible in order to avoid the detrimental effects of electromagnetic and electrostatic fields. These fields tend to produce breakdown in mercury vapor, are detrimental to tube life, and make filtering difficult. External shielding should be used when the tubes are in proximity to these fields. R-f filtering should be used when the tubes are affected by r-f voltages. When shields are used, special attention must be given to adequate ventilation and to the maintenance of normal condensed-mercury temperature.

#### OPERATION

FILTER CIRCUITS of either the condenser-input or the choke-input type may be used. If the condenser-input type of filter is used, special attention must be given to the instantaneous peak value of the a-c input voltage which is about 1.4 times the rms value as measured with an a-c voltmeter. It is important, therefore, that the filter condensers (especially the input condenser) have a sufficiently high breakdown rating to withstand the instantaneous peak value. With the condenserinput type of filter, the peak plate current of the tube is considerably higher than the load current. When choke-input to the filter is used, the peak current is substantially reduced. This type of filter is preferable from the standpoint of obtaining the maximum continuous d-c output current from the 866-A/866 under the most favorable conditions.

Two or more 866-A/866's may be connected in parallel to give a corresponding increase in output current over a single tube. In this service, a stabilizing resistor of approximately 50 ohms should be connected in series with each plate in order that a proportionate share of the total load current will be carried by each tube. In special cases where it is desirable to minimize the small power loss caused by the voltage drop through the stabilizing resistor, an inductance of approximately one-third henry may be connected in series with the plate lead of each tube in place of the stabilizing resistor. The inductance has the added advantage of limiting the peak current to each tube, which is especially desirable when a condenser-input type of filter is used.

PRINTED

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

11-41 (7M) Filing No. B8850

# GENERAL B ELECTRIC

# Forced-air-cooled Transmitting Tubes - - Installation and Operation

#### INSTALLATION

#### MECHANICAL

The handling of a transmitting tube requires care since a tube may be damaged if subjected to shock or vibration.

The tube should be tested upon receipt in the equipment in which it is to be used. The glass bulb, and particularly the glass area around the terminals, should be free from foreign matter The leads become hot during operation so that any foreign material may become charred and cause puncture of the bulb.

The standard mounting supports the tube in the correct vertical position with the glass end up. The tube must not be subjected to vibration or shock. It is advisable to secure the tube in its mounting jacket in the desired location before making the electrical connections. The grid and filament leads should not be taut, but should allow for some movement without placing a strain on the glass bulb. Before readjustment of the tube is made, the leads should be disconnected.

#### Cooling

The air-cooling system for the anode consists of a blower with a suitable air duct leading to the fin cooler of the tube. The air flow required is specified on the Description and Rating Sheet for each type. The temperature of the incoming air should not exceed 45 C.

Proper cooling must be provided to limit the glass temperature to not more than 150 C at the hottest point. Usually deflecting vanes diverting the outgoing air toward the terminal seals provide sufficient cooling. In some cases it may be necessary to provide a separate cooling system. This system may consist of a blower and an air duct of suitable cross-sectional area leading to a nozzle directing the air flow. For the 893-R a nozzle is incorporated in the cathode base. The air flow required is specified on the Description and Rating Sheet for each type.

The cooling air must not contain any foreign matter. The air-cooling systems should be properly installed to insure safe operation of the tube under all conditions and for this reason should be electrically interconnected with the filament and plate supplies to prevent the application of voltages to the tube without suitable cooling. An air-flow interlock which removes the filament and plate power is necessary to protect the tube when the air flow is Precautions insufficient or ceases. should be taken to insulate the aircooling system from the anode and grid.

#### ELECTRICAL

Suitable meters should be provided for reading filament voltage, plate voltage and current, and d-c grid current. A tube life recording meter (to read hours of operation) should also be provided.

The installation of all wires and connections must be made so that they do not lie on or close to the glass of the tube. Otherwise, severe trouble may arise from corona discharge or increased dielectric loss which will result in almost certain puncture.

The filament circuit carries a high current at low voltage. Therefore, precautions should be taken against loss of voltage and heating due to poor connections. The filament connectors particularly should be large and make good contact.

In the case of the 8002-R tube, three filament leads are brought out to terminals. These may be paralleled by capacitors to reduce the inductance of the filament circuit for the r-f returns. The filament sections must be operated in series from the filament supply. The center tap is to be used only for r-f or power supply returns.

The high initial rush of current through the filament when the switch is first closed should be limited by the use of some form of filament starter. This may be a system of time-delay re-

lays cutting resistance out of the circuit, a high-reactance filament transformer, or a manual control. In any case, the starting current must never, even momentarily, exceed 1 1/2 times the normal value. Provision must be made also for accurate adjustment and maintenance of the filament voltage. The filament voltmeter should be connected to indicate the voltage at the filament terminals. The filament base should not be connected to ground or to any part of the circuit. Filament power may be alternating current or direct current. When alternating current is used, the plate and grid circuit returns should be made to the center point of the filament supply. When direct current is used, these returns should be made to the negative terminal.

For multiphase filament tubes it is essential that the connections for each type of filament voltage supply be made according to the circuit diagramt to prevent distortion and possible failure of the filament.

The plate circuit should be provided with a time-delay relay to delay the application of plate voltage until the filament has reached at least eighty per cent of the normal voltage. It must be provided also with protective devices to prevent the tube from drawing a heavy overload. The coil of an instantaneous overload relay (set for slightly higher than normal plate current) placed in the ground lead of the plate return and operating to remove the plate voltage, may be used for this purpose. The total. time required for the operation of the relay and breaker should be in the order of one-tenth second and not more than one-sixth second. Plate series protective resistors should also be provided to protect the tube from excessive energy dissipation during instantaneous failure of insulation, within the tube or within the transmitter. The minimum value of this resistor which will give adequate protection with minimum power loss is given on the Description and Rating Sheet. Precautions must be taken so that no high capacitance is connected directly across the tube in such a manner that a disturbance within the tube will discharge appreciable energy from the capacitor.

† See Description and Rating Sheet.

The grid circuit should be provided with heavy conductors, carefully connected, in order to prevent overheating of the grid terminal due to r-f currents.

In the 8002-R tube three grid leads are brought out to terminals. These may be used in parallel to reduce the inductance of the grid circuit. If desired, to reduce coupling, one lead may be used for the neutralizing circuit and the other two for the grid-excitation circuit. When the tube is used in an oscillator circuit at the higher frequencies, it may be necessary to neutralize the feedback partially in order to prevent excess grid excitation caused by the normal grid-plate capacitance.

If two or more tubes are used in the circuit, controls should be provided so that adjustment may be made to balance properly the plate curnent taken by each tube.

In Class B service, grid bias of excellent regulation is usually required.

In Class C service, the bias voltage may be supplied by a grid leak, or by a combination of grid leak and generator, grid leak and rectifier, or grid leak and cathode-bias resistor suitably by-passed. The combination method is particularly suitable to reduce distortion, especially in plate-modulated operation. Since the grid-bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.

The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.

#### OPERATION

When a new tube is first placed in operation, it should be operated without plate voltage for fifteen minutes at rated filament voltage. After this initial preheating schedule, plate voltage can be applied. Operate for fifteen minutes at approximately one-half the usual plate voltage, Full voltage may then be applied and the tube operated under the normal load conditions for a period of one hour or more. Every three months spare tubes should be given this

2

preheating and initial operation schedule.

The filament should be operated at constant voltage rather than constant current and must be allowed to reach at least eighty per cent normal voltage before plate voltage is applied. Intermittent power supply interruptions may be allowed provided the time off does not exceed one second. If the tube is to be used at relatively low output, the plate current will be less than normal, requiring less than normal emission of the filament. The filament, therefore, may be operated at a voltage slightly lower than rated voltage, giving longer life. The permissible reduction in filament voltage may be checked by reducing the filament voltage with the transmitter under normal operation to a value where reduction in output or increase in distortion can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament supply voltage. Care must be taken that sufficient emission is provided. Otherwise, instability of operation or excessive distortion may be experienced, or the rated plate dissipation of the tube may be exceeded. From the viewpoint of tube life, it is usually economically advantageous to provide good regulation of the filament voltage. For example, if the filament is operated continuously at six per cent above normal voltage, the evaporation life will be reduced to approximately one half.

When a multiphase filament-supply voltage is used, the phase voltages must all balance within fifteen per cent during the filament starting period. During normal operation the phase voltages must never, even momentarily, exceed ten per cent unbalance.

If the apparatus in which the tube is used is to be idle for periods not exceeding two hours, voltage should be maintained on the filament. However, if desired, provision may be made to reduce the filament voltage to approximately eighty per cent of the rated value during the stand-by. Where stand-by periods exceed two hours the filament voltage may be removed.

When direct-current filament exci-

tation is used, the filament leads should be reversed every five hundred hours of operation.

Maximum ratings and typical operating conditions for each recommended class of service are given on the Description and Rating Sheet. The amplifier classifications used are those given in the Report of the Standards Committee of the Institute of Radio Engineers.

The output values given in the tabulation on the Description and Rating Sheet are approximate tube outputs under certain typical operating conditions. These must not be used as output ratings; circuit losses must be subtracted from the tube output in calculating the useful output.

In determining the value of plate voltage for normal operation, the line voltage fluctuation, load variation, and manufacturing variations must be estimated so that the maximum rated values will not be exceeded.

When a new circuit is tried or when adjustments are made, the plate voltage should be reduced to approximately onehalf the rated value to prevent damage to the tube or associated apparatus. After correct adjustment has been made with the tube operating smoothly and without excessive heating of the cooler or the glass bulb, the plate voltage may be raised in several steps to the desired value. Adjustments should be made at each step for optimum operation.

In case of overload and resultant overheating of the tube, the vacuum may be impaired. When the quantity of gas is not too great, the tube may be operated to bring about an electrical cleanup of the gas. The first step in the process should be a short period of operation at a plate voltage of one-half the normal value. The plate voltage should then be increased to the normal value and the tube allowed to operate for a period of one hour or more. In severe cases it may be possible to age the tube by operating with a series resistor in the plate supply. Short periods of operation may be conducted at each step as the resistor is reduced until stable operation at the normal plate voltage is obtained.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y. Supersedes GEH-1198A

6-44 (15M) Filing No. 8850



### Transmitting Tube GL-836 - - Installation and Operation

#### Installation

The base of the GL-836 fits the standard 4-contact socket such as the Type UR-542A. The socket may be mounted to hold the tube in any position.

The bulb becomes very hot during continuous operation. Provision should be made for adequate natural ventilation to prevent overheating.

The heater of the 836 is designed for a-c operation from a secondary winding of a power transformer. The winding should supply at the socket terminals the rated voltage of 2.5 volts under average operating conditions. The heater voltage measured at the tube terminals should not vary more than +5 per cent from the rated value. This tolerance should include the effects of regulation caused by transmitter-modulation load as well as the normal power-Voltage should be apsupply regulation. plied to the heater for a length of time sufficient to permit the cathode to come up to operating temperature before plate current is drawn from the tube. For average conditions, the delay should be approximately 40 seconds. In radio transmitters during stand-by periods, the heater should be kept at its rated voltage to avoid delay in "coming back." If the stand-by periods exceed two hours, the filament current may be shut off. A voltmeter should be connected across the heater circuit at the socket terminals to provide a ready check of the heater voltage. Caution should be observed when the heater voltage is measured because the heater circuit is at high potential.

The cathode of the 836 is connected within the tube to one side of the heater. The positive return lead to the filter and load circuit should be connected to the heater lead (pin 4) to which the cathode is connected. When the heaters of two or more 836's are operated in parallel, the corresponding cathode leads must be connected together; likewise, the corresponding heater leads.

#### Operation

In full-wave single-phase circuits, two 836's are required to rectify both The a-c input halves of the a-c voltage. voltage (rms) for two tubes, plate-toplate, must not exceed 3530 volts in order to limit the maximum peak inverse voltage to the rated value of 5000 volts. With a sine-wave input and the use of a suitable choke preceding any condenser in the filter circuit, the no-load d-c output voltage from the rectifier is 0.9 of the a-c input voltage per tube. On this basis, the maximum d-c output voltage is 1590 volts when the maximum a-c input voltage of 1765 volts is used. Under the above voltage and filter conditions, the regulation produced by the drop in the tube at fullload current will not be greater than 55 volts, approximately. The drop due to the transformer and to the filter can be calculated from the d-c resistance of each device.

Filter circuits of the condenser- or the choke-input type may be employed. Where condenser input is used, the capacity of the input condenser must be low enough to limit the peak plate current to rating of the tube. When choke input to the filter is used, the peak plate current is substantially reduced. The choke-input type of filter is preferable from the standpoint of obtaining the maximum continuous d-c output current from the 836 under the most favorable conditions.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

# GENERAL 🛞 ELECTRIC

### **Transmitting Tube GL-815 - - Installation and Operation**

#### Installation

The base of the GL-815 fits the standard octal socket which may be installed to hold the tube in a vertical position with the base either up or down. It may also be mounted in a horizontal position provided the plane of each plate is vertical (on edge).

The <u>bulb</u> becomes very hot during continuous operation of the tube so that free circulation of air around the tube should be provided.

The heaters of the 815 are connected in series within the tube with a center tap brought out to a separate base pin. This arrangement permits either series operation from a 12.6-volt supply or parallel operation from a 6.3-volt supply. Either an a-c or d-c supply may be used. Under any condition of operation, the heater voltage should not vary more than +10 per cent from the rated value. The heaters should be operated at normal voltduring stand-by periods. If the age stand-by periods exceed two hours, the filament current may be shut off.

The cathodes of the 815 are connected together within the tube. The cathode circuit should be connected to the electrical midpoint of the heater circuit when the heaters are operated from an a-c supply, or to the negative heater-supply lead when the heaters are operated from a d-c source. In circuits where the cathode is not directly connected to the heater, the potential difference between the heater and cathode should not exceed 100 volts. If the use of a large resistor is necessary between heater and cathode in some circuits, it should be by-passed to avoid the possibility of hum.

The <u>plates</u> of the  $\delta_{15}$  show no color when the tube is operated at its maximum plate-dissipation rating.

The <u>screens</u> of the 815 are connected together within the tube. Screen voltage may be obtained from a separate source, from a voltage divider, or from the plate supply through a series resistor. The choice of method depends on the service in which the tube is used (see OPERATION). When the screen voltage is obtained from a separate source or from a voltage divider, plate voltage should be applied before or with the screen voltage. Otherwise, with voltage on the screens only, the screen current may rise high enough to cause excessive screen dissipation. When screenvoltage regulation is not an important factor, the series resistance method for obtaining the screen voltage is desirable because of its simplicity and because it limits the d-c power input to the screen. A d-c milliammeter should be used in the screen circuit so that the screen current can be measured and the d-c power input to the screen determined. The screens should not be allowed to attain a temperature at which they will show color.

The screen current is a very sensitive indication of the plate-circuit loading and rises excessively (often to the point of damaging the tube) when the amplifier is operated without load. Therefore, care should be taken when tuning an 815 under no-load conditions in order to prevent exceeding the screen-input rating of the tube.

A protective device, such as a highvoltage fuse, should be used to protect both the screens and the plates against overloads. When a bleeder resistor of poor regulation or a series resistor is used for obtaining the screen voltage, this device should be placed in the common positive high-voltage supply lead. It should remove the screen voltage when the d-c screen current reaches a value 50 per cent greater than normal.

Shielding of the r-f amplifier stages employing the 815 is required for stable operation. A convenient method of shielding is to insert the plate end of the tube through a hole in a metal plate so that the edge of the opening is in close proximity to the internal shield of the tube.

<u>R-f by-passing</u> of the 815 at its socket is necessary in order to realize the full capabilities of the tube at the ultrahigh frequencies. The impedance between the screen and the cathode must be kept low, usually by means of a suitable by-pass condenser. It may also be advisable in some applications to supplement the action of the by-pass condensers by r-f chokes placed close to the condensers in the voltage supply leads. It is important that the grid-, plate-, and screen-circuit returns are made to the common cathode connection in order to avoid r-f interaction through common circuit returns.

In order that the maximum ratings given under CHARACTERISTICS are not exceeded, changes in electrode voltages due to battery- or line-voltage fluctuations, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of voltage for each electrode should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate and screen voltages. This may be done conveniently by means of a protective resistance of about 4000 ohms (total) in series with the screen lead and a protective resistance of about 2000 ohms in series with the high-voltage supply lead.

The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c potential.

#### Operation

In Class AB<sub>2</sub> audio service, the 815 may be operated as shown under CHARACTER-ISTICS. The values cover operation with fixed bias and have been determined on the basis of some grid-current flow during the most positive swing of the input signal.

In Class B r-f service, the 815 is supplied with unmodulated d-c plate voltage and the grid is excited with r-f voltage modulated at audio frequency in one of the preceding stages. Under these conditions, the plate dissipation is greatest when the carrier is unmodulated. The screen voltage should be obtained from a separate source or from a voltage divider connected across the plate-voltage supply. Grid bias may be obtained from a rectifier of good regulation, or from a cathode resistor suitably by-passed for both audio and radio frequencies.

In grid-modulated Class C r-f service, the 815 is supplied with unmodulated r-f excitation voltage and a d-c grid bias which is modulated at audio frequencies. Grid bias should preferably be obtained from a fixed supply. The plates are supplied with unmodulated d-c voltage. The audio power required in this service is very small and need be sufficient only to meet the peak power requirement of the grids of the Class C amplifier on the positive crest of the input signal. The actual peak value is generally never more than 0.5 watt. The screen voltage should be obtained from a separate source or from a voltage divider connected across the plate supply.

In plate-modulated Class C r-f amplifier service, the GL-815 can be modulated The screen voltage should 100 per cent. preferably be obtained from a voltagedropping resistor in series with the modulated plate supply, although it may also be obtained from a fixed supply. In any case, the screen voltage must be modulated simultaneously with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed supply can be accomplished either by connecting the screen lead to a separate winding on the modulation transformer or by connecting it through a blocking condenser to a tap on the modulation transformer or choke. With the latter method, an a-f choke of suitable impedance for low audio frequencies should be connected in series with the screen-supply lead. Control-grid bias should be obtained from a grid resistor or from a combination of grid resistor and fixed supply, or grid resistor and cathode resistor. The combination method of grid resistor and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation. Grid-bias voltage for Class C service is not particularly critical so that correct adjustment may be obtained with values differing widely from those indicated for this service.

In <u>Class C r-f telegraph service</u>, the 815 may be supplied with screen voltage by any of the methods shown under INSTALLA-TION. When a series screen resistor is used, the regulation of the plate supply should be good enough so that the plate voltage will not exceed 600 volts under key-up conditions. Grid bias may be obtained by any convenient method.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com



# $C = See L_1$

- C1 C3 C4 = 1 in. x 1 1/2 in. copper sheet insulated from chassis by mica sheet 0.002 in. thick, or 0.0005-µf "postage stamp" mica condensers soldered to chassis with shortest practicable leads.
- C2 C5 = Copper disks, 1/16 in. x 1 1/2 in. Solder disks to 10-32 brass screws 1 in. long. Drill and tap grid and plate lines for 10-32 screws.

 $R_1 = 15,000 \text{ ohms}, 0.5 \text{ watt}$ 

- $R_2 = 15,000$  ohms, 25 watts, adjustable
- L<sub>1</sub> = 1/2 in. diameter copper tubing. Length of tubing and capacitance of C depend upon driver tubes employed.
- L<sub>2</sub> = 1/2 in. diameter copper tubing, 12 1/2 in. long and spaced approximately 7/8 in. between centers.
- L<sub>3</sub> = 1/2 in. diameter copper tubing, 13 in. long and spaced approximately 7/8 in. between centers.

#### NOTES

- (1) The r-f driver stage should be able to deliver about one watt of useful r-f power, in order to insure ample grid excitation for the 815.
- (2) Adjust coupling between L<sub>1</sub> and L<sub>2</sub> and tuning of C and C<sub>2</sub> for recommended d-c grid current of the 815.
- (3)  $L_1$  and  $L_2$  should be effectively shielded from  $L_3$  by a metal chassis, or by a vertical metal baffle plate used to mount the 815.
- (4) Adjust coupling of "hairpin" antenna coil to L<sub>3</sub> so that the amplifier is properly loaded.
- (5) A small lumped inductance can be substituted for the amplifier grid lines, if desired. Such a grid coil is preferably tuned by varying its inductance, rather than by means of a variable condenser.



2-42 (4M) Filing No. B8850

Supersedes GEH-1205

www.SteamPoweredRadio.Com

# GENERAL & ELECTRIC

# **Transmitting Tube GL-1616 -- Installation and Operation**

#### Installation

The base of the 1616 fits the standard 4-contact socket such as the Type UR-542A. The plate connection is made to the cap at the top of the bulb.

The coated filament should be operated at the rated voltage of 2.5 volts under average operating conditions. The filament voltage, measured at the tube terminals, should not vary more than plus or minus 5 per cent from the rated value. This should include the effects of regulation caused by the varying load as well as the normal power-supply regulation. Less than the recommended voltage will increase the voltage drop and the plate dissipation. Greater than the rated voltage will shorten the life of the filament.

The filament and plate voltage of the 1616 may be applied simultaneously under full load conditions. However, in applications where rapid off-on operation is necessary, the filament should be kept at its rated voltage.

Caution should be observed when the filament voltage is measured because the filament circuit is a high d-c potential.

#### Operation

The maximum surge-current rating is a measure of the ability of a tube to withstand extremely high transient currents of short duration. This rating is intended for use only in the design of equipment as an allowable limit for abnormal currents during switching operations which occur, for example, when the tube works into a low-impedance filter such as an uncharged filter condenser.

In full-wave, single-phase rectifier circuits, the a-c input voltage (rms) for two 1616's, plate-to-plate, must not exceed 3900 volts in 'order to limit the maximum peak inverse plate voltage to the rated value of 5500 volts. With a sine-wave input and the use of a suitable choke preceding any condenser in the filter circuit, the no-load d-c output voltage is 0.9 of the a-c input voltage per tube. On this basis the maximum d-c output is 1750 volts when the maximum a-c input voltage per tube is 1950 volts. Under the above voltage and filter conditions the regulation produced by the drop in the tube at fullload current will not be greater than 90 volts approximately. The drop due to the transformer and to the filter can be calculated from the d-c resistance of each device.

Filter circuits of either the condenser-input or the choke-input type may be employed. Where condenser input is used the capacity of the input condenser must be low enough to limit the peak and surge currents to the rating of the tube. When choke input to the filter is used the peak and surge currents are substantially reduced. The choke-input type of filter circuit is preferable from the standpoint of obtaining the maximum continuous d-c output current from the 1616 under the most favorable conditions.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 7-41 (2M) Filing No. B8850





**Transmitting Tube GL-8010A-R - - Installation and Operation** 

MECHANICAL

Mountings must be of good quality and should be so installed as to minimize danger from impact. If the set is subject to vibration, a shock absorbing suspension must be employed. A rigid mounting may be used for one of the three disks; connections to the other two disks must have sufficient flexibility to permit expansion of the glass. All connections should be silver-plated and should be kept clean.

#### COOLING

The bulb becomes very hot during operation and, therefore, should neither come in contact with any metallic object nor be subjected to drops or spray of liquid.

A small blower is required for cooling the anode end which is fitted with a disk type cooler. Suitable ducts or deflecting vanes should be arranged to direct air across the coolers. Air flow must be sufficient to limit the glass temperature to 100 C at the hottest point. Ordinarily a single blower, giving a static pressure of 1/2 inch of water and the free air delivery of 60 cfm, will suffice for a pair of tubes operating at maximum rating.

### ELECTRICAL

The heater supply voltage variation should be less than plus or minus 5 per cent. A voltmeter should be connected to indicate filament voltage at the heater terminals.

The heater connectors should be so designed as to provide positive contact with the heater terminals without placing any strain on the glass bead.

The grid-circuit and plate-circuit return leads should be connected to the cathode.

An ammeter should be connected in the plate circuit of each tube, or pair of tubes in push-pull, so that the direct plate current may be checked regularly. The plate circuit should be provided with a protective device, such as a fuse or relay, in order to prevent overheating caused by improper circuit adjustments or overloading. This device should remove high voltage instantly if the direct current reaches a value 50 per cent above normal. A suitable time delay device should be provided to prevent application of plate voltage for at least one minute after heater voltage has been applied. Plate voltage must be removed immediately whenever heater voltage is removed.

In rating pliotrons, certain values are given as maximum; that is, the values beyond which it is unsafe to go from the viewpoint of life and performance. In order not to exceed the maximum ratings, changes in plate and

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com filament voltage caused by line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. Then, an average value of plate voltage should be chosen so that under the usual operating conditions the maximum ratings will not be exceeded.

IN TRYING OUT A NEW CIRCUIT OR WHEN ADJUSTMENTS ARE MADE, THE PLATE VOLTAGE SHOULD BE REDUCED IN ORDER TO PREVENT DAMAGE TO THE PLIOTRON OR ASSOCIATED APPARATUS IN CASE THE ADJUSTMENTS ARE INCORRECT.

#### Operation

CLASS C R-F AMPLIFIER

Maximum ratings for this tube are given on the Description and Rating Sheet.

Grid bias for Class C service may be obtained from a grid leak, from a battery, from a rectifier of good regulation, or from a self-biasing resistor by-passed with a suitable capacitor. With the grid-leak method the grid excitation must not be removed without also removing the plate voltage. Grid bias values are not particularly critical, and correct circuit adjustment may be obtained with widely different values.

# GENERAL ELECTRIC COMPANY, SCHENECTADY, N.Y.

3-43 (2M) Filing No. 8850

Supersedes GEH-1239A

www.SteamPoweredRadio.Com

# GENERAL 🛞 ELECTRIC

# **Transmitting Tube GL-8020 - - Installation and Operation**

#### Installation

#### MECHANI CAL

Mountings must be of good quality and should be so installed as to minimize danger from impact. If the set is subject to vibration, a shock-absorbing suspension must be employed.

#### COOLING

All apparatus must be arranged to allow free circulation of air around the tube. The bulb becomes very hot during operation and, therefore, should neither come in contact with any metallic object nor be subjected to drops or spray of liquid.

Sets using more than one tube should provide adequate spacing between tubes so that adjacent portions of the bulbs do not operate appreciably hotter than the other sections.

Any accumulation of dust and metallic particles on the outer surface of the glass walls will increase the leakage over this surface. As this may result in tube failure from arc-over, periodic cleaning of these surfaces should be maintained.

#### ELECTRICAL

To avoid danger of corona discharge, all wires and connections should be made to allow several inches of free space around the tube.

The filament should be operated preferably from an a-c source, although a d-c supply may be used. The filament voltmeter should be connected to indicate the voltage at the filament terminals. The filament supply should be designed to allow operation at rated filament voltage. The filament voltage should not vary more than +5 per cent from the rated value. The filament transformer shall have good regulation and should be designed for at least 30 per cent above rated filament wattage. When the tube is used in intermittent service the filament voltage may be removed for stand-by periods greater than 15 minutes. There should be no reduction of filament voltage for periods of less than five minutes. The filament voltage may be reduced to 80 per cent during periods greater than five minutes if desired.

Overheating by severe overload may decrease filament emission. Unless the overload has liberated a large amount of gas, the activity of the filament usually can be restored by operating the filament at rated voltage for ten minutes or more with no voltage on the plate or grid. This process may be accelerated by increasing the filament voltage to 20 per cent above the normal value (not higher) for a few minutes.

The plate circuit should be provided with a protective device such as a fuse or relay in order to prevent overheating. This device should remove the plate voltage instantly if the directplate current reaches a value 50 per cent above normal.

In the ratings, certain values are given as maximum; that is, the values beyond which it is unsafe to go from the viewpoint of life and performance. In order not to exceed the maximum ratings, changes in plate and filament voltage caused by line-voltage fluctuations, load variation, and manufacturing variation of the associated apparatus must be determined. Then, an average value of plate voltage should be chosen so that under usual operating conditions the maximum ratings will not be exceeded.

#### Operation

The GL-451 may be used in any of the usual rectifier circuits. Tubes may be operated in parallel to develop the required output current. The ratings given on the Technical Information prescribe two limiting operating conditions.

The first is a maximum peak inverse voltage which should not exceed a certain safe value determined by the insulation between electrodes of the tube. The maximum peak inverse voltage is the highest voltage that the tube will insulate on the half cycle when no current is passing through the tube. As any and all of the following factors - line surges, circuit capacitance, wave form distortion, and the maximum peak voltage of the applied alternating voltage - may increase this inverse voltage to a value higher than the rated maximum peak voltage, the tube should never be used at the maximum voltages unless measurements. rated either by oscillograph or sphere gap, have indicated that at no time does the

peak voltage across the tube exceed this value.

The second limiting value is the power dissipation of the plate which is determined by the d-c load current almost regardless of the voltage across the load. The maximum peak plate current is the greatest instantaneous current that may be drawn on the half cycle during which the plate of the tube is positive. As the design of the circuit, especially the amount of capacitance in the circuit, is a major factor in determining the amount of current available in a given rectifier, oscillograph measurements of this current should be made if any doubt exists as to the magnitude.



| Fig | Circuit                           | E average                       | E inverse                  | I average  |
|-----|-----------------------------------|---------------------------------|----------------------------|------------|
| 1   | Single-phase, Full-wave           | 0.318 Emax 0.450 Erms           | Emax 3.14 Eavg             | 0.636 Imax |
| 2   | Single-phase, Full-wave           | 0.636 Emax 0.900 Erms           | Emax 1.57 Eavg             | 0.636 Imax |
| 3   | Three-phase, Half-wave            | 0.827 Emax 1.170 Erms           | $\sqrt{3}$ Emax 2.09 Eavg  | 0.827 Imax |
| 4   | Three-phase,<br>Double-Y Parallel | 0.827 Emax 1.170 Erms           | 1.732 Emax 2.09 Eavg       | 1.91 Imax  |
| 5   | Three-phase, Full-wave            | 1.65 Emax 2.34 Erms             | √3 Emax 1.05 Eavg          | 0.955 Imax |
| 6   | Voltage Doubler                   | 2.83 Erms<br>No Load Conditions | Eavg<br>No Load Conditions |            |

Note for Fig 6:

Output voltage depends on load and circuit regulation. The circuit must be designed so that the tube ratings are not exceeded. Particularly, values of C and R must be chosen to limit charging current so that peak current rating of tube will not be exceeded.

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y. 3-42 (2M)

Filing No. B8850

# GENERAL & ELECTRIC

# Transmitting Tube GL-8012 -- Installation and Operation

#### INSTALLATION

Terminal connections for the 8012 can be made conveniently by means of supporting clamps. The clamps should have large contact surfaces but should be of small size in order to minimize circuit capacitances. The filament terminals are brought out through a separate seal at one end of the bulb. The 8012 should be installed to operate in a vertical position.

Connections to the grid and plate terminals must be flexible enough so that normal expansion will not place a strain on the glass at the seals, yet heavy enough to carry the high circulating r-f current. The terminal clamps should be fastened to the grid and plate lead connections before the tube is mounted in position. Clamps should be sprung slightly so that they can be slipped easily over their respective Connections should never be terminals. soldered directly to the tube terminals because the heat of the soldering operation may result in cracking of the lead seals. The tube terminal tips should not be used to support circuit parts unless such parts are extremely light and impose no strains on the tube terminals.

The <u>bulb</u> becomes very hot during continuous operation of the tube so that free circulation of air around the tube should be provided. The installation of all wires and connections should be made so that they will not be close to or touch the bulb, in order to avoid puncture of the glass due to peak voltage effects.

The filament voltage should not vary more than ±5 per cent from the rated value; otherwise a loss of emission may result. It is recommended that, in intermittent operation where the average number of transmissions is greater than 100 per day, the filament be maintained at 80 per cent of normal voltage during stand-by periods. If the number of transmissions is less than 100 per day, the filament power may be either removed or maintained, whichever is preferred. However, in such applications as amateur service where the average number of transmissions is usually not greater than 100 and where the stand-by periods are usually no longer than the transmission periods, the filament voltage may be maintained at normal value during stand-by periods. The filament should be operated at constant voltage rather than constant current.

Overheating of the 8012 by severe overload may decrease the filament emis-The filament activity can somesion. times be restored by operating the filament at rated voltage for ten minutes or more with no voltage on plate or grid. This process may be accelerated by raising the filament voltage to 7.5 volts (not higher) for a few minutes. The positive high-voltage supply lead should be provided with a protective device, such as a relay. This device should instantly remove the plate voltage when the d-c plate current reaches a value 50 per cent greater than normal.

The <u>plate</u> of the 8012 shows a dull red color at its maximum plate-dissipation rating for each class of service.

<u>R-f by-passing</u> of the grid- and plate-return circuits should be made to the center lead of the filament. It is important that the returns be made to this common connection in order to avoid r-f interaction through common return circuits. In some applications, it may also be advisable to supplement the action of the by-pass condensers by r-f chokes placed close to the condensers in the voltage-supply leads.

In order that the maximum ratings will not be exceeded, changes in plate and filament voltages due to line-voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. An average value of plate and filament voltages should then be chosen so that under the usual voltage variations the maximum rated voltages will not be exceeded. When a new circuit is tried or when adjustments are made, the plate voltage should be reduced in order to prevent damage to the tube of associated apparatus in case circuit adjustments are incorrect. It is advisable to use a protective resistance of about 6000 ohms in series with the plate lead during such adjustments. The rated plate voltage of this tube is high enough to be dangerous to the user. Care should be taken during the adjustment of circuits, especially when the exposed circuit parts are at high d-c plate potential.

#### OPERATION

In grid-modulated Class C telephone service, the 8012 may be supplied with d-c grid bias from a cathode resistor, unby-passed for audio frequencies, or from a fixed supply. The audio power required in this service is very small. It need be only sufficient to meet the peak power requirement of the grid of the Class C amplifier on the crest of the input signal. The actual peak value is generally never more than three watts.

In <u>plate-modulated</u> Class <u>C</u> r-f service, the 8012 may be supplied with grid bias from a grid resistor, or from a combination of grid resistor with either fixed supply or cathode resistor.

600-Mc PARALLEL-PLATE OSCILLATOR Useful Power Output, 25 Watts, Approx



- $C_1 = 0.001 \ \mu f mica$
- L<sub>1</sub> L<sub>6</sub> = Filament Lines: each 5/8" copper tubing, 6 1/2" long, approx.
- L<sub>2</sub> = Pickup Loop; l" high, 2" long, approx.
- L<sub>3</sub> = Plate Line: 1/32" sheet copper, 4" by 2 5/16", with cutouts to fit tube bulbs

- L<sub>4</sub> = Grid Line: similar to L<sub>3</sub> and spaced approx 3/4" from it.
- L<sub>5</sub> = 8 turns of No. 12 copper wire 5/8" diameter wound around R
- $R_1 = 200$  ohms, 2 watts
- $R_2 = 1200$  ohms, 2 watts
- S1 S2 = Shorting Blocks
- Typical Operating Conditions at 600 Mc (both tubes): Filament Voltage = 6.3 volts Filament Current = 2 amperes Plate Voltage = 450 volts Plate Current = 150 Ma, max

Grid Current = 32 Ma (approx)

The cathode resistor should be suitably by-passed for both a-f and r-f. The combination method has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

In <u>Class C r-f telegraph service</u>, the 8012 may be supplied with grid bias by any convenient method. When the tube is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. If the 8012 is operated at the maximum rated plate voltage of 1000 volts, a fixed bias of at least -40 volts should be used.

When the 8012 is operated at the ultrahigh frequencies, push-pull operation is recommended. This connection has the advantage of simplifying the balancing of high-frequency circuits by providing symmetry of layout. In oscillator service, it is desirable to connect the two grid terminals and the two plate terminals of each tube in parallel in order to reduce their respective A cut-away drawing lead inductances. and a circuit diagram for a 600-Mc oscillator employing two 8012's are shown. This oscillator makes use of two parallel plates, L3 and L4, as frequencydetermining elements. Filaments of the tubes are maintained close to ground potential for r-f by means of the tuned filament lines, Ll and L6. The sliding shorting bars, S1 and S2, can be used to control excitation to the grids of the The slots in L3 and L4 are pritubes.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com marily for mechanical alignment of the tubes, although they can also be used to make minor tuning adjustments. The parallel plates, L3 and L4, are supported at their geometrical centers, and then d-c plate and grid connections are made to the plates at these points. The structural arrangement permits unusual symmetry of construction.



# GENERAL C ELECTRIC

5-42 (3M) Filing No. B8850

# GENERAL & ELECTRIC

## **Service Sheet for Electronic Tubes**

#### INSTRUCTIONS

Complete instructions are packed with each tube. Additional copies can be secured from the nearest office of the General Electric Company.

General Electric tubes are warranted to be of the kind and quality described in the manufacturers' specifications. Before leaving the factory, each tube is subjected to rigid tests and inspections. Performance will depend, to a large extent, upon the application, and upon the care with which the tubes are handled. In case of doubt as to proper operating conditions, information should be secured from the General Electric Office through which the purchase was made.

# INFORMATION AND INSTRUCTIONS

#### INTRODUCTION

This service sheet is furnished for the convenience of the customer in applying for adjustment if the quality of the tube does not meet the specification and warranty under which the tube was sold. In order that prompt action can be taken the information required in the service report form should be supplied in complete detail.

#### INITIAL TEST

To assure satisfactory operation, it is recommended that each tube be tested upon receipt by the customer, preferably in equipment of the same type and rating as that in which it is to be used. Such a procedure will assure that tubes damaged in transportation are not carried in stock. If spare tubes are stocked for long periods, a check test should be made at least every three months. The conditions of test and operation shall not be more severe than the conditions described in the manufacturers' specifications and instructions.

#### TRANSPORTATION CLAIMS

Should the package be received in a damaged condition, observance of the procedure for notifying the Express Company described on the tag affixed to the container will enable the General Electric Company to assist the customer in filing a claim for tubes damaged in transit.

#### **RETURN PROCEDURE**

The following procedure should be observed

if the tube fails to comply with the specifications or warranty under which it was purchased.

- The tube should be returned immediately, by prepaid express, to: Tube Division Electronics Department, Building 269 General Electric Company Schenectady, New York Attention: Mr. D. A. Mullaney
- 2. Notice that a tube in being returned to the factory should be sent to the Service Engineering Division, General Electric Company, Schenectady, New York, giving the date that the tube was originally purchased, original purchase order number (if the tube was furnished on a district office requisition, give the requisition number), and the net purchase price of the tube.
- 3. Tubes returned for credit adjustment should be packed as carefully as when originally received, for damage sustained in return shipment will make a thorough examination impossible.

If more than one tube is involved, the tubes should be identified by some permanent marking, such as a securely tied tag, which will enable them to be associated with this service report.

### PERMISSION FOR DISMANTLING

In returning a vacuum tube for test and examination, the customer gives permission to the General Electric Company to open the tube and to dissect its structure in case such procedure is considered necessary for complete examination.

### SERVICE REPORT FORM - NEMA STANDARD

| Tube Type No.                                                                                                   | Serial No.               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Date Received                                                                                                   | Date First Tested        |  |  |  |
| Date Placed in Service                                                                                          | Date Inoperative         |  |  |  |
| Hours of Cathode Operation                                                                                      | Hours of Anode Operation |  |  |  |
| If Stand-by Operation Was Used Show Filament Voltage for Stand-by Condition                                     |                          |  |  |  |
| Nature of Defect                                                                                                |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
| Describe any unusual phenomena which took place just previous to or at time of failure                          |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
| Code No. and maker of equipment in which tube was used                                                          |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
| Was tube used in experimental equipment or experimental adjustment.                                             |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
| Were all other circuit elements operating properly at time of tube failure                                      |                          |  |  |  |
|                                                                                                                 |                          |  |  |  |
|                                                                                                                 | Purchaser                |  |  |  |
| and all the second s | Address                  |  |  |  |

GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

10-43 (100CM) Filing No. 8850

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com