

Rockwell International

instruction book USER MAAUAL WIK.CLM

831C-2 1.25-kW FM Transmitter and 831D-2 2.5-kW FM Transmitter 310Z-2 FM Exciter

4.8 .1 Air Switch Adjustment 4-5
4.8 .2 Filament Voltage Checks and Adjustment. 4-5
4.8 .3 Preliminary Power Amplifier Bias Adjustment 4-5
4.8 .4 Power Amplifier Tuning and Loading Control Checks 4-6
4.8 .5 Preliminary Overload Adjustments 4-6
4.8.5.1 Power Amplifier Plate 4-6
4.8.5.2 Power Amplifier Screen 4-6
4.8.5.3 VSWR 4-6
4.8 .6 Tally/Recycle Card Checks 4-7
4.8 .7 Power Amplifier Card, Preliminary Checks and Adjustments 4-7
4.9 Initial Power Adjustments 4-8
Static Plate Current. 4-8
4.9 .1
310Z-2 FM Exciter
310Z-2 FM Exciter 4-8 4-8
4.9 .2
4.9 .2
Grid Tuning
Grid Tuning 4-8 4-8
4.9 .3
4.9 .3
Power Amplifier Tuning
Power Amplifier Tuning 4-8 4-8
4.9 .4
Power Output Meter Adjustments 4-9
4.9 .6 Reflected Power Overload Checks 4-9
4.9.7 Manual Power Control 4-10
4.9 .8 Automatic Power Control 4-10
4.9 .9 Monitor Output 4-10
4.10 Replacement of Parts 4-10
4.10 .1 5CX1500A Tube 4-10
4.10 .2 4-10
4.10 .3 Fuses 4-10
4.11 Change of Frequency 4-10
Section 5 Parts List 5-1
5.1 General 5-1
5.2 Ordering Replacement Parts 5-1
list of illustrations
Figure
1-1 831D-2 2.5-kW FM Transmitter, Typical for 831C-2 1.25-kW FMTransmitter1-0
2-1 831C-2/831D-2 Outline and Installation Drawing. 2-3
2-2 Transmitter Transformer Connections 2-6
2-3 Plate and Grid Slider Adjustments 2-8
2-4 831C-2 and 831D-2 Controls and Indicators 2-9
2-5 831C-2 Transmitter Efficiency Curves, Typical 2-17
2-6 831D-2 Transmitter Efficiency Curves, Typical 2-18
2-7 Optional Remote Control Interface Card Connectors2-20
list of illustrations
Figure Page
2-8 Remote Switching Connections, Interface Card 2-212-9
Remote Metering Connections 2-21
Local Hard-Wired Remote Panel, Optical Connections 2-23
831C-2 and 831D-2 Transmitters, Major Assemblies Location 3-2
831C-2/831D-2 Transmitters, Simplified Block Diagram. 3-3
Power Amplifier, Simplified Schematic Diagram
Power Amplifier, Simplified Schematic Diagram 3-5 3-5
Filament and Blower Control, Simplified Schematic Diagram 3-7
Plate Control, Simplified Schematic Diagram 3-8
Overload Sensing, Simplified Schematic Diagram 3-10
Power Control, Simplified Schematic Diagram 3-12
Bias Circuit, Simplified Schematic Diagram 3-14
Power Amplifier Screen Power Supply and Metering, Simplified Schematic Diagram 3-15
High Voltage Power Supply and Power Amplifier Metering, Simplified Schematic Diagram. 3-16
Power Amplifier Filament Metering, Simplified Schematic Diagram 3-17
5-1 3-18831D-2 2.5-kW FM Transmitter, Front View (Typical for
831C-2 1.25-kN FM Transmitter). 5-2 5-2831D-2 2.5-kW FM Transmitter, Front View With Access
Panels Removed (Typical for 831C-2 1.25-kW FM Transmitter) 5-35-3 831D-2 2.5-kW FM Transmitter, Rear View With Access PanelRemoved (Typical for 831C-2 1.25-kW FM Transmitter)Components (Typical for 831C-2 1.25-kW FM Transmitter).5-4
831D-2 2.5-kW FM Transmitter, Rear View Floor Mounted 5-4
5-5Control Circuit Card.5-5
5-9
5-6 Overload Tally/Recycle Card (Optional) 5-15
5-7 Power Monitor Card. 5 5-19
5-8 Card Cage Assembly (Rear View). 5-23
5-9 Power Amplifier Cavity Assembly 5-25
5-10 Control Circuit and Low-Voltage Power Supplies. 5-30
5-11 Control Circuits and Low-Voltage Power Supplies Board Assembly 5-33
5-12 High-Voltage Rectifier Assembly 5-37
5-13 Meter Multiplier Board Assembly 5-39
5-14 Remote Control Assembly (Optional) 5-43
list of tables
Table
2-1 831C-2 and 831D-2 Controls and Indicators 2-10
2-2 Typical Control Panel Meter Readings at Various Output Power Levels (831C-2) 2-14
Table Page
2-3 Typical Control Panel Meter Readings at Various Output Power Levels (831D-2) . 2-14 4-1 Test Equipment4-3

Figure 1-1. 831D-2 2.5-kW FM Transmitter, Typical for 831C-2 1.25-kW FM Transmitter (Sheet 1 of 3).

$\begin{array}{lll}\text { Figure 1-1. } & 831 \mathrm{D}-2 & 2.5-\mathrm{kW} \text { FM Transmitter, Typical for } \\ & 831 \mathrm{C}-2 & 1.25-\mathrm{kW} \text { FM Transmitter (Sheet } 2 \text { of 3). }\end{array}$

Figure 1-1. 831D-2 2.5-kW FM Transmitter, Typical for 831C-2 1.25-kW FM Transmitter (Sheet 3 of 3).

1.1 INTRODUCTION

The Collins 831C-2 1.25-kW FM Transmitter and 831D-2 2.5-kW FM Transmitter (figure 1-1) operate in the FM broadcast range (88 to 108 MHz), and when equipped with optional stereo generator and SCA generator, provide continuous monaural, stereophonic, and SCA (subsidiary communication authorization) frequency-modulated service. Reduced power output is available by tap changes at the plate and screen transformers and by "phasing back" the power controller.

1.2 PHYSICAL DESCRIPTION

The transmitter is housed in a single cabinet which utilizes a steel frame with removable front and rear panels. Access is from the front for exciter modules, control circuit cards, and the power amplifier tube, and from the front and rear for other components. Mechanical and electrical interlocks are provided on front and rear access panels, power amplifier plate cavity door, and grid compartment door. Location of major assemblies that make up the transmitter is shown in figure 3-1.

The transmitter output connection is a $50-\mathrm{ohm}, 4.1-\mathrm{cm}(1-5 / 8$-inch) EIA flange. A transmission line which terminates in an FM antenna or 50 -ohm dummy load must be connected to the transmitter output before energizing the equipment.

1.3 FUNCTIONAL DESCRIPTION

The 831C-2 and 831D-2 transmitters consist of a 310Z-2 FM Exciter, a single tube rf power amplifier cavity assembly, solid-state sensing circuits, and an optional overload tally/recycle card. The FM exciter generates a 20 -watt frequency-modulated signal that drives a single 5CX1500A power amplifier tube to 1250 watts (831C-2) or to 2500 watts (831D-2) output power into a 50 -ohm load. Solid-state sensing circuits remove power if a power amplifier plate, power amplifier screen, or vswr overload occurs. The optional overload tally/recycle card provides status memory of which circuit overloaded and provides either 2 -shot or 4 -shot transmitter recycle.

The transmitter may be controlled locally at the transmitter, through an extended control panel, or remotely with a customer-supplied external remote control unit. Remote connections are accomplished through terminal boards inside the transmitter.

1.4 TECHNICAL CHARACTERISTICS

1.4.1 Mechanical

Weight:

Size:

Ventilation:

Ambient Humidity:
Ambient Temperature Range:
Altitude:
Shock and Vibration:
Finish:
1.4.2 Electrical

Frequency Range:

Power Output:
831C-2
831D-2

Power Range:
831C-2
831D-2

Power Source:

Input Power Requirements:
831C-2
831D-2
317.5 kg (700 pounds), $831 \mathrm{C}-2$
340.2 kg (750 pounds), 831D-2
1736.4 mm (68.38 inches) high
882.6 mm (34.75 inches) wide 616.0 mm (24.25 inches) deep

Squirrel-cage type blower mounted inside transmitter under power tube compartment; cabinet flushing fan mounted on top panel

Up to 95% relative humidity
$+15^{\circ}$ to $+45^{\circ} \mathrm{C}\left(+59^{\circ}\right.$ to $\left.+113^{\circ} \mathrm{F}\right)$
Up to 2286 m (7500 feet) at $+30^{\circ} \mathrm{C}\left(+86^{\circ} \mathrm{F}\right)$
Normal handling and transportation
Cabinet exterior - gray baked enamel

88 to 108 MHz ; exact operating frequency determined by crystal in oscillator of exciter

1250 watts maximum, into a 50 -ohm unbalanced load, standing wave ratio not to exceed 2:1

2500 watts maximum, into a 50 -ohm unbalanced load, standing wave ratio not to exceed 2:1

250 to 1250 watts
500 to 2500 watts
200 to 250 volts ac, 60 Hz , single phase (50 Hz available)

3000 watts; power factor 0.90
4900 watts; power factor 0.90
Excitation Source:
Output Impedance:
Output Connection:
Carrier Frequency Stability:

Harmonic and Spurious Radiation:

Modulation Characteristics:
Audio Input Impedance (to the exciter):

Audio Input Level (to the exciter):

Audio Frequency Response:

Audio Frequency Distortion:
Monaura 1
Stereo
Intermodulation Distortion:
Monaural
Stereo
Stereo Separation:

FM Noise Level:

310Z-2 20-Watt FM Exciter
50 ohms, unbalanced
4.1-cm (1-5/8-inch) EIA flange

Within $\pm 500 \mathrm{~Hz}$ of specified carrier frequency
for an ambient temperature range of $+15^{\circ}$ to $+45^{\circ} \mathrm{C}\left(+59^{\circ}\right.$ to $\left.+113^{\circ} \mathrm{F}\right)$ and line voltage variation of $\pm 5 \%$

Any emission appearing on a frequency removed from the carrier by 120 to 240 kHz inclusive is at least 25 dB below the level of the unmodulated carrier. Any emission appearing on a frequency removed from the carrier by more than 240 kHz and up to and including 600 kHz is at least 35 dB below the level of the unmodulated carrier. Any emission appearing on a frequency removed from the carrier by more than 600 kHz is at least 77 dB below the level of the unmodulated carrier for the 831D-2, and at least 74 dB for the 831C-2.

Wide-band direct FM
600 ohms, balanced
$+10 \mathrm{dBm} \pm 2 \mathrm{~dB}$

Complies with standard FCC $75-\mu \mathrm{s}$ preemphasis curve

Not more than 0.25\%
Not more than 0.5\%
0.25% maximum
0.5\% maximum

50 Hz to $15,000 \mathrm{~Hz}, 35 \mathrm{~dB}$ minimum; reaching $50-\mathrm{dB}$ midrange

65 dB below 100% modulation ($\pm 75 \mathrm{kHz}$)

AM Noise Level (rms):
Not less than 55 dB below equivalent 100% AM level

SCA:

Monaura 1
Stereo

41 kHz and 67 kHz available
67 kHz only; without filters for band-limited audio or with $5-\mathrm{kHz}$ low-pass audio filter and bandpass output filter, $150-\mu s$ preemphasis

2.1 UNPACKING AND INSPECTING

2.1.1 Domestic Shipments

The transmitter is shipped uncrated on a shipping skid via a commercial air-ride van. Unpack the transmitter as follows:

CAUTION
Use care in moving the transmitter. Use appropriate lifting and moving equipment with at least $567-\mathrm{kg}$ (1250-1b) capacity. Some components may be damaged if the transmitter is dropped or severely jarred.
a. Remove the transmitter from the van to a position near its installation site.
b. Lift the transmitter from the shipping skid.
c. Remove the two screws from the bottom of the rear access panel. Lift the panel
from the transmitter.
d. Inspect the transmitter for loose hardware. Ensure that all controls operate freely. Examine the cabinet for dents and scratches.
e. File any damage claims properly with the transportation company. Retain all packing material if a claim is filed.

2.1.2 Foreign Shipments

The transmitter is shipped in a skid-type crate via a commercial transportation company. Unpack the transmitter as follows:
CAUTION

Use care in unpacking and moving the transmitter. Use appropriate lifting and moving equipment with at least $567-\mathrm{kg}$ ($1250-1 \mathrm{~b}$) capacity. Some components may be damaged if the transmitter is dropped or severely jarred.
a. Position the crated transmitter near its installation site.
b. Refer to the instructions stenciled on the side of the shipping crate and carefully uncrate the transmitter.
c. Remove the two screws from the bottom of the rear access panel. Lift the panel from the transmitter.
d. Inspect the transmitter for loose hardware. Ensure that all controls operate freely. Examine the cabinet for dents and scratches.
e. File any damage claims properly with the transportation company. Retain all packing material if a claim is filed.

2.2 PREINSTALLATION

2.2.1 Power and Control Cables

Refer to figure 2-1. Power and audio cables may be brought into the transmitter through access holes at the top or at the bottom of the transmitter. Determine the length needed and the placement of the following cables:
a. Wiring for the 200 - to $250-\mathrm{volt}$ ac, $60-\mathrm{Hz}$, single-phase power source, from customer-supplied disconnect switch (25 amperes for 831C-2, 40 amperes for 831D-2) to A2TB4.
b. The $4.1-\mathrm{cm}(1-5 / 8-i n c h) \mathrm{rf}$ output coax from the $4.1-\mathrm{cm}$ (1-5/8-inch) EIA flange to the antenna.
c. Audio cables from audio source to 310Z-2 exciter through the customer wiring duct.
d. Rf coaxial cables from cavity sample loops to station monitors (if equipped).
e. Remote control and remote metering cables to customer-supplied remote control equipment.

2.2.2 Power Source

The 831C-2/831D-2 transmitters require a 200 - to $250-v o l t$ ac, $60-\mathrm{Hz}$, single-phase power source capable of delivering $3000 / 4900$ watts at a power factor of 0.9 . Provision should be made for a fused main power disconnect switch or circuit breakers. The fuse or breaker should be rated at 25 amperes for the 831 C -2 and 40 amperes for the 831D-2. Connect the primary power to terminal board A2TB4 with no. 8 AWG gauge wire (or in accordance with local wiring codes) as follows:
a. Connect the hot wires to A2TB4-1 and A2TB4-2.
b. Connect the neutral wire to A2TB4-3.
c. Connect the station ground to A2TB4-4.

NOTE

Installation of power line transient voltage suppressors from each power line to ground is recommended. The suppressors should be installed at the fused disconnect box with as short leads as the installation will permit. The voltage from each line to ground should be measured and the appropriate size selected from one of several available reputable suppliers. For further information, contact Collins Customer Service.

Figure 2-1. 831C-2/831D-2 Outline and Installation Drawing.

2.2.3 Transmitter Control

The transmitter may be controlled locally at the transmitter, through an extended control panel (not supplied as part of transmitter), or remotely through customersupplied remote equipment. Both the extended and remote control configurations use an optional remote control interface card.

2.3 COOLING

2.3.1 General

The transmitter should be located in a room supplied with an abundance of clean, cool air. If hood and ducting are chosen to dispose of heat to the outside, the hood and exhaust duct must be capable of 1000 cubic feet per minute ($\mathrm{ft} 3 / \mathrm{min}$) and not create any backpressure to the transmitter. It then follows that if the air is exhausted out of the room, an equal amount must be provided into the room to prevent transmitter air supply starvation. Be sure the ambient air conditions comply with equipment specifications.

2.3.2 Heat Load

The heat load to the room per hour is as follows:

831C-2	1750 watts or 5973 Btu
831D-2	2400 watts or 8191 Btu

2.3.3 Air Requirements

The total air flow through the cabinet of the $831 \mathrm{C}-2$ or the $831 \mathrm{D}-2$ is the same, and is as follows:

Cabinet Flushing
Tube Cooling
$475 \mathrm{ft}^{3} / \mathrm{min}$
$80 \mathrm{ft}^{3} / \mathrm{min}$

All air into the cabinet enters through the air filter on the lower half of the back access panel, and is exhausted out the top of the cabinet. (See figure 2-1 for inlet and exhaust locations.)

2.4 LOCATION AND ASSEMBLY

2.4.1 Location

a. Place the cabinet in the desired location, making sure that all cables mentioned in paragraph 2.2 are accessible when the cabinet is in position.
b. Allow at least 1.1 m (3.5 feet) of clearance at front and rear for servicing access.
c. Ascertain that environmental conditions are within the temperature, humidity, and altitude limits listed in paragraph 1.4.1.

WARNING

HIGH VOLTAGE is used in this equipment. DEATH ON CONTACT may result if you fail to observe safety precautions.

When working inside the equipment, be sure that all circuit breakers are off and that primary power is disabled at the wall disconnect or circuit breaker, unless otherwise directed. If a procedure requires transmitter operation with access panels removed, do not allow bodily contact with any electrical components, taps, or terminals. Use heavily insulated tools to adjust variable components.

WARNING
Primary power must not be applied until the procedures in paragraphs 2.4 and 2.5 are completed.

2.4.2 Assembly

a. Remove rear access panel by removing two screws at the bottom of the panel. Lift panel up and off.
b. Remove front access panel.

NOTE

A11 831C-2 and 831D-2 transmitters are factory adjusted at a specific line voltage. This voltage is noted on an orange tag affixed to plate transformer T2. If your line voltage is different, set taps on T2, A2T2, and A2T1 before applying power to the transmitter.
c. The range of allowable voltage input is made possible by the availability of tap connections on plate transformer T2, screen transformer A2T1, and 28-volt transformer A2T2. The available power source range is 200 to 250 volts rms ac, 50 or 60 Hz . See figure 2-2 for transmitter transformer connections. Note that 831D-2 plate transformer T2 has additional primary taps 2 and 3 for reduced power operation (lower plate voltage). Additional primary taps are not required on the 831C-2.

NOTE

Transmitters are tuned and tested at the customer's frequency, and are normally shipped with the tube and transformers in position. Under normal initial switch-on conditions, the customer will not be required to perform steps d. through f.
d. Unscrew two panel fasteners on the rf power amplifier cavity door and open the door. Raise the blocking capacitor covering the tube socket and insert the 5CX1500A power amplifier tube. Ensure that the tube fits properly in the socket before turning it clockwise to lock in place. Connect the plate cap lead to the tube and lower the blocking capacitor over the tube.

PLATE TRANSFORMER, T2

LINE VOLTAGE	PRIMARY TERMINAL CONNECTION USED	
	$831 C-2$	$8310-2$
200	$1-4$	$3-4$
210	$1-5$	$3-5$
220	$1-6$	$3-6$
230	$1-7$	$3-7$
240	$1-8$	$3-8$
250	$1-9$	$3-9$

28 VOLT TRANSFORMER, A2T2

LINE VOLTAGE	PRIMARY TERMINAL CONNECTION USED
200	$1-2$
210	$1-3$
220	$1-4$
230	$1-5$
240	$1-6$
250	$1-7$

SCREEN TRANSFORMER, A2T1

LINE VOLTAGE	PRIMARY TERMINAL CONNECTION USED
200	$1-2$
210	$1-3$
220	$1-4$
230	$1-5$
240	$1-6$
250	$1-7$

Figure 2-2. Transmitter Transformer Connections.
e. Measure the distance from the floor of the plate cavity to the bottom of the plate slider and make sure this distance corresponds to the proper operating frequency (customer operating frequency), as indicated in figure 2-3. (The plate slider has been preset in the factory for the customer's operating frequency; but if it has been jarred loose in shipping or has been moved for some other reason, it must be reset.) Close the cavity door and lock the fasteners in place.
f. Open the grid tuning door, and measure the distance from the top of the grid tuning bars to the top of the control grid slider (figure 2-3), and ensure the measured distance corresponds to operating frequency. (This distance has also been preset in the factory and should not be adjusted unless the slider has been moved before initial turn-on.) Close the grid tuning door and lock the fastener.
g. Connect the audio cables to the exciter as instructed in the 310Z-2 exciter section of this manual.
h. Connect the customer-supplied 50 -ohm output r fransmission line to the $4.1-\mathrm{cm}$ (1-5/8-inch) EIA output flange on the top of the transmitter.

CAUTION

Ensure that the transmission line and antenna or dummy load present an impedance of 50 ohms at a vswr of not more than 2:1 at the operating frequency. Damage will result from an improper match between the transmitter and the transmission line.
i. Connect the customer-supplied modulation and frequency monitor to the jacks on the rear of the power amplifier cavity.
j. Replace all access panels and close all access doors.
2.5 INITIAL TURN-ON PROCEDURE

> NOTE

Thoroughly familiarize yourself with the location and function of all controls and indicators before proceeding. See figure 2-4 and table 2-1.

2.5.1 Preliminary Operating Control Settings

a. Ensure that all circuit breakers are off.
b. Remove paper insulator inserted in the battery pack, BT1 through BT4, located on the A2 assembly. If batteries are low, leave control fuse F1 and LOW VOLTAGE circuit breaker AICB1 on overnight.

Figure 2-3. Plate and Grid Slider Adjustments.

Figure 2-4. 831C-2/831D-2 Controls and Indicators.

Table 2-1. 831C-2 and 831D-2 Controls and Indicators.

REFERENCE DESIGIATION	CONTROLS AND INDICATORS	FUNCTION
A1S1	FIL OFF	Pushbutton momentary switch with indicator lamp. Removes filament voltage from the transmitter.
A1S2	FIL ON	Pushbutton momentary switch with indicator lamp. Applies filament voltage to the transmitter after the blower starts.
A1S3	PLT OFF	Pushbutton momentary switch with indicator lamp. Removes plate and screen voltage from the 5CX1500A.
A1S4	PLT ON	Pushbutton momentary switch with indicator lamp. Applies all operating voltage to the transmitter following a 30 - to 45 -second plate-on time delay.
A1S5 (DS16)	FAULT	Indicates plate, screen, or vswr overload. Pushbutton resets overload indicator.
A1S6	TEST METER Selector	Rotary switch that selects one of seven readings to display on the test meter.
A1M1	TEST METER	Displays seven internal operational voltage or current readings.
A1M2	PLATE VOLTAGE	Displays power amplifier plate voltage.
A1M3	PLATE CURRENT	Displays power amplifier plate current.
A1M4	POWER OUTPUT	Displays transmitter forward or reflected power.
A1S7	TUNE	Spring-loaded momentary switch that positions plate tuning capacitor C9.
A1S8	LOAD	Spring-loaded momentary switch that positions plate loading capacitor C10.
A1S9A	REMOTE/LOCAL CONTROL	2-position switch that selects remote or local control of transmitter.
A1S10	MANUAL/AUTO CONTROL	2-position switch that selects manual or automatic control of transmitter power.

Table 2-1. 831C-2 and 831D-2 Controls and Indicators (Cont).

REFERENCE DESIGNATION	CONTROLS AND INDICATORS	FUNCTION A1S11 AEFL/FWD POWER
A1R12	RAISE/LOWER POWER	2-position switch that selects forward or reflected power for display on the POWER OUTPUT meter.
A1CB2		
Spring-loaded momentary switch that lowers		
or raises power when power control switch		
S10 is in MANUAL.		

NOTE

Batteries should be removed during the time the LOW VOLTAGE circuit breaker is open, otherwise, the batteries will run down and will not be able to provide AIAI logic memory required to restore transmitter to on-air status after a power failure.

Also, the RECYCLE ON/OFF switch in A1A1 control circuit card must remain in the OFF position unless the transmitter is equipped with the optional A1A2 tally/recycle card; in which case, the switch must be in the ON position for the A1A2 card to function.
c. Set the REMOTE/LOCAL CONTROL switch to LOCAL.
d. Set the AUTO/MANUAL CONTROL switch to MANUAL.
e. Set the FWD/REFL POWER switch to FWD.
f. Set the 310Z-2 exciter POWER switch to OFF.

2.5.2 Initial Turn-On

a. Check the fuses in the circuit breaker and fuse panel and make sure that they have the same rating as marked on the panel.
b. Close the primary disconnect switch.
c. Set the LOW VOLTAGE circuit breaker AICBI to ON. Press FIL OFF pushbutton. The FIL OFF and PLT OFF pushbuttons should light. Blower may start and run for 30 seconds or less, depending on the status of A1A1.
d. Set TEST METER switch A1S6 to 28 V PS position. TEST METER should read 28 volts.
e. Set TEST METER switch A1S6 to 5V PS position. TEST METER should read 5 volts.
f. Set TEST METER switch to FIL position.
g. Press FIL ON pushbutton. Blower should start and when up to speed, the FIL ON pushbutton should light. The TEST METER, with A1S6 in the FIL position, should read 5 volts. If the meter reading is not 5 volts (15 volts full scale), adjust the front panel FIL ADJUST control A1R1 for a 5-volt indication on the TEST METER.
h. Make certain that HIGH VOLTAGE circuit breaker A1CB2 is in the OFF position.
i. Push the PLT ON pushbutton.

NOTE

The PLT ON indicator in the PLT ON pushbutton should light when the high voltage contactor A2K2 operates. A2K2 operates within 30 to 45 seconds after the PLT ON pushbutton is pressed.
j. Set A1S6 to BIAS position. The TEST METER should read approximately 95 volts.
k. After the PLT ON lamp has come on, perform the following steps:

> NOTE

High-voltage interlocks and shorting switches are actuated by all the access panels and doors (except the cabinet side panels). When a door or access panel is opened, the high voltage is automatically cut off and the screen and plate power supplies are shorted to ground.

1. Open the plate cavity door. The PLT ON lamp should go out and the PLT OFF lamp should come on. Close the plate cavity door and the PLT OFF lamp should go out and the PLT ON lamp should come on.
2. Open the grid tuning compartment door. The PLT ON and FIL ON lamps should go out and the PLT OFF and FIL OFF lamps should come on. Opening the grid tuning compartment door more than 1 inch deenergizes the PA tube filament. Close the grid tuning compartment door and the PLT OFF and FIL OFF lamps should go out and the PLT ON and FIL ON lamps should come on.
3. Remove and replace lower front access panel, rear panel, and control section cover plate sequentially, noting that each time an access panel or cover plate is opened, the PLT ON lamp goes out and PLT OFF lamp comes on.

> CAUTION

Make sure that a 50 -ohm transmission line and antenna or suitable dummy load has been connected before proceeding.

1. Set the 310Z-2 POWER switch to ON.
m. Set the MANUAL/AUTO switch to MANUAL.
n. Close HIGH VOLTAGE circuit breaker AICB2.
o. Press the PLT ON pushbutton. After a maximum delay of 30 to 45 seconds, the PLT ON indicator should light.
p. Set TEST METER switch A1S6 to each of the seven switch positions and compare the indications observed on TEST METER AIM1 with readings given in tables 2-2 or 2-3.
q. If meter indications are substantially lower, perform the following tune-up procedure:
2. Set REFL/FWD POWER switch to FWD. Set TEST METER switch A1S6 to GRID I position.
3. Adjust GRID TUNING capacitor A1A6C4 for peak in grid current, as read on
TEST METER.
4. Operate TUNE switch on the control panel to dip plate current.

Table 2-2. Typical Control Panel Meter Readings at Various Output Power Levels (831C-2).

METER					
TEST METER positions					
5V PS	500 W	750 W	1000 W	1250 W	
28V PS	30 V	5.1 V	5.1 V	5.1 V	5.1 V
FIL	4.95 V	5.0 V	5.0 V	5.0 V	5.0 V
BIAS	135 V	131 V	128 V	125 V	121 V
GRID I	7.0 mA	6.5 mA	5.8 mA	5.2 mA	4.5 mA
SCRN V	210 V	270 V	310 V	350 V	390 V
SCRN I	25 mA	37 mA	47 mA	57 mA	66 mA
PLATE VOLTAGE	1450 V	1900 V	2280 V	2550 V	2880 V
PLATE CURRENT	290 mA	390 mA	470 mA	550 mA	630 mA
POWER OUTPUT	100%	100%	100%	100%	100%

Table 2-3. Typical Control Panel Meter Readings at Various Output Power Levels (831D-2).

METER	500 W	1000 W	2000 W	2500 W
TEST METER positions	5 V	5 V	5 V	5 V
5 V PS	28 V	28 V	28 V	28 V
28V PS	4.8 V	4.8 V	4.8 V	4.8 V
FIL	105 V	100 V	100 V	98 V
BIAS	11 mA	10 mA	9.5 mA	9.3 mA
GRID I	270 V	350 V	465 V	525 V
SCRN V	54 mA	65 mA	78 mA	90 mA
SCRN I	2250 V	3200 V	4500 V	4750 V
PLATE VOLTAGE	340 mA	480 mA	680 mA	790 mA
PLATE CURRENT	100%	100%	100%	100%
POWER OUTPUT				

4. Operate LOAD switch to maximize power output.

$$
\begin{array}{|l|}
\hline \text { NOTE } \\
\hline
\end{array}
$$

The TUNE and LOAD controls operate motors driving plate-tuning capacitor C9 and plate-loading capacitor C10. Considerable interaction exists between the controls and adjustment may have to be repeated several times to optimize power output and efficiency.
5. Operate the RAISE/LOWER POWER switch to obtain the desired power.
NOTE

The RAISE/LOWER POWER switch raises and lowers the plate and screen voltage of the 5CX1500A tube.
6. The POWER OUTPUT meter readings should approximate those in table 2-2 for the 831C-2 or table 2-3 for the 831D-2.
r. Set the MANUAL/AUTO CONTROL switch to AUTO.
s. Adjust APC control R13 (screwdriver-adjust trimpot) on power monitor card A1A3 to the required rf power output level.

NOTE

The power control circuits constantly monitor the transmitter. Any overload occurring in the transmitter is sensed and the transmitter is automatically shut down. With the power control in AUTO, the rf output power level is also monitored, and the plate and screen voltages are automatically raised and lowered to maintain output power at a level determined by APC control A1A3R13.
t. Perform FCC Proof of Performance tests and record normal operating voltage current and power levels.
u. The transmitter is now ready for normal operation.
2.6. NORMAL TURN-ON AFD ADJUSTMENTS
a. Close both the LOW VOLTAGE (AICB1) and HIGH VOLTAGE (AICB2) circuit breakers.
b. Press FIL OFF pushbutton.
c. Press FIL ON pushbutton.
d. Wait 30 to 45 seconds and check ALARM indicator on the modulator exciter circuit card in the 310Z-2 exciter. The indicator should be extinguished.
e. Set MANUAL/AUTO CONTROL switch to MANUAL.
f. Press PLT ON pushbutton.
g. Observe forward and reflected power. Forward power should be near 100%. If it is not, refer to the factory test data sheet supplied with the transmitter and check all meter readings.
h. Set TEST METER switch A1S6 to GRID I position and adjust GRID TUNING control A1A6C4 for a peak indication on TEST METER A1M1.
i. Operate the TUNE switch to obtain a dip in plate current.
j. Operate the LOAD switch to obtain maximum power output.
NOTE

The LOAD and TUNE controls will interact to a certain degree, and they should be adjusted alternately for highest output with lowest input (best efficiency).
k. Adjust the RAISE/LOWER POWER control for 100% output, as read on the POWER OUTPUT meter.

1. Set the MANUAL/AUTO CONTROL switch to AUTO and adjust R13 on power monitor card A1A3 for an indication of 100% on the POWER OUTPUT meter.

> NOTE

A 100% indication on the POWER OUTPUT meter corresponds to the station authorized power level and should correspond to: $E_{p} \times I_{p} \times$
EFFICIENCY FACTOR $=$ STATION AUTHORIZED POWER. Efficiency EFFICIENCY FACTOR = STATION AUTHORIZED POWER. Efficiency factors for the transmitters are given in figures 2-5 and 2-6.

2.7 TURN-OFF PROCEDURES

2.7.1 Norma1 Turn-Off
a. Push PLT OFF pushbutton A1S3.
b. Push FIL OFF pushbutton A1S1.
c. Blower will continue to run for approximately 45 seconds to allow tube cool-down.
d. When the blower stops, set HIGH VOLTAGE (A1CB2) and LOW VOLTAGE (A1CB1) circuit breakers to OFF.
e. Open the primary disconnect switch.

2.7.2 Emergency Turn-Off

a. Push FIL OFF pushbutton A1S1.
b. Open HIGH VOLTAGE (A1CB2) and LOW VOLTAGE (A1CB1) circuit breakers or
c. Open primary disconnect switch.

Figure 2-5. 831C-2 Transmitter Efficiency Curves, Typical.

Figure 2-6. 831D-2 Transmitter Efficiency Curves, Typical.

2.8 REMOTE CONTROL

2.8.1 General

The transmitter can be remotely controlled when it is used with the optional remote control assembly A2A4 (Collins part number 632-0073-001) and connected to a customer furnished remote control panel. (See figure 2-7.) Control wiring from the remote control assembly is terminated on A2TB5 in the transmitter. Control information from the remote control panel is fed via an STL (studio transmitter link) to TB1 of the remote control assembly. The remote control panel may also be hard wired to TB1 of the remote control assembly for control purposes and to A2TB6 for metering purposes. See paragraph 2.9 and figure 2-9 for metering terminations and figure 2-8 for typical remote panel.

Fail-safe relay $K 5$ on the remote control assembly A2A4 must be energized at all times the transmitter is under remote control. Relay K5 is energized as long as the transmitter REMOTE/LOCAL CONTROL switch A1S9 has been switched to the REMOTE position, and the sensing relay of the telemetry output of the STL receiver are closed. When the STL relay contacts open, K5 is deenergized. K5 contacts are connected in series with the transmitter's interlock circuits, thus the interlocks are opened when the fail-safe relay is not energized. The mono/stereo select relay is a latching relay. It and all other relays operate on momentary application of 28 volts. The fail-safe relay is energized at all times when the transmitter is operating properly under remote control conditions.

Control pushbuttons on the remote control panel should be of the momentary contact type and should be provided for the following functions:

FILAMENT ON	PLATE ON	RAISE POWER	MONO SELECT
FILAMENT OFF	PLATE OFF	LOWER POWER	STEREO SELECT

2.8.2 Remote Control Installation

Prior to initial connection of the remote control system, the following transmitter switches must be set:
a. LOW VOLTAGE and HIGH VOLTAGE circuit breakers A1CB1 and A1CB2 to 0FF.
b. Primary disconnect switch to OFF.

2.8.3 Remote Interface Board Strapping

The 831C-2/831D-2 will interface with three types of remote control systems; a 28or 48-volt negative common control power supply system, a 28 - or 48 -volt positive common control power supply system, or a $115-\mathrm{volt}$ ac control power supply system.

Pins A through H (figure 2-7) provide strapping for the type of power control system used. The internal $28-v o l t$ power supply may be used as the remote control source.

The remote control unit is connected to terminals 1 through 6 and 8 through 12 of TB1. The telemetry output of the receiver is connected to a sensing relay with one contact of the relay connected to 28 volts, and one contact connected to pin 7 of TB1.

Figure 2-7. Optional Remote Control Interface Card Connections.

notes:

1. ALL SWITCHES MOMENTARY EXCEPT FAIL. SAFE.
2. REMOTE INTERFACE CARD SHOULD BE STRAPPED $24 V$ NEG COMMON.

Figure 2-8. Remote Switching Connections, Interface Card.

Figure 2-9. Remote Metering Connections.

2.8.4 Remote Control Status

a. Position REMOTE/LOCAL CONTROL switch A1S9A to REMOTE.
b. Set primary power disconnect switch to ON .
c. Set LOW VOLTAGE and HIGH VOLTAGE circuit breakers ON.
d. Set 310Z-2 exciter POWER switch to ON.

2.8.5 Remote Power Control

Automatic or manual control of transmitter power can be selected at the remote control panel through PLT ON, RAISE POWER, and LOWER POWER pushbuttons.

Pressing the PLT ON pushbutton on the remote control panel applies +28 volts through A2TB5-5 to pin 8 at U1C in the A1A1 control circuit card and through A2TB5-11 to pins 4 and 5 of U4B in the A1A3 power monitor card. Thus, remote plate-on operations to start or to recycle the transmitter after an overload condition, allow the transmitter to be switched on in the automatic power control mode.

The manual power control mode is selected at the remote control panel by operation of the remote RAISE POWER or LOWER POWER pushbuttons. Operation of either pushbutton energizes K6 or K7 in the remote control interface card and applies +28 volts through A2TB5-12 to pins 1 and 2 of U4A on the A1A3 power monitor card.

Pressing the remote RAISE POWER pushbutton also applies 117 volts ac through A2TB5-8 to the E4 contact of power adjust motor A1A5B1, and operation of the remote LOWER POWER pubhsutton applies 117 volts ac through A2TB5-9 to the E3 contact of the power adjust motor. The power adjust motor drives manual power adjust potentiometer A1A5R2 to control transmitter output power level.

2.8.6 Remote Stereo/Monaural Switching

Remote stereo/monaural switching momentary contact closure of the remote STEREO pushbutton latches relay $K 8$ in one direction and closes the relay contacts. Momentary contact closure of the MONO pushbutton latches K8 in the opposite direction and opens the relay contacts. The relay contact status is applied through A2TB5-13 and A2TB5-14 of the transmitter to TB1-13 and TB1-14 of the 310Z-2 exciter, controlling relay K1 in the A6 audio processing card.

NOTE

The MODE switch on the 310Z-2 exciter must be in either the LEFT or RIGHT position for remote operation. The STEREO position overrides the remote stereo OFF function.

2.8.7 Remote Overload Reset

The transmitter may be reset from the remote control panel by pushing the PLT ON pushbutton. The FAULT lamp on the transmitter FAULT pushbutton will remain lit. Manual operation of the FAULT pushbutton on the transmitter is necessary to clear the FAULT 1 amp.

2.9 REMOTE METERING

Refer to figure 2-9. Connections for remote metering of five transmitter parameters; plate current, plate voltage, forward power, reflected power, and filament voltage, are provided at A2TB6.
NOTE

Remote meters must have dc movements and, except for power meters, linear scales.

note:

1. ALL SWITCHES MOMENTARY EXCEPT FAIL SAFE AND MONO/STEREO SELECT.
2. CONNECTIONS SHOWN DIRECT TO A2TB5 AND NOT THROUGH REMOTE INTERFACE CARD.

MW100-0217-3

Figure 2-10. Local Hard-Wired Remote Pane1, Optional Connections.

3.1 GENERAL

The 831C-2 and 831D-2 FM transmitters (figure 3-1) operate in the 88 - to $108-\mathrm{MHz}$ frequency range. The 831C-2 FM Transmitter operates at 1250 -watt maximum power output and the 831D-2 FM Transmitter operates at 2500-watt maximum power output.

A Collins 310Z-2 solid-state FM wide-band exciter drives the power amplifier section of the transmitter. The 310Z-2 has provisions for monaural or stereo, and SCA operation.

The 831C-2 and 831D-2 transmitters contain automatic power control circuits and power amplifier overload sensing circuits. An optional overload recycle/tally card may be provided that functions to restore the transmitter to on-the-air status should a temporary overload occur.

Control of the transmitter may be locally at the transmitter or remotely with customersupplied remote control equipment.

Refer to figure 3-2.
Direct audio (monaural, stereo, SCA) or studio transmitter link (STL) baseband is applied to the 310Z-2 FM Exciter to frequency modulate the on-frequency (88- to 108MHz) carrier generated in the exciter. The FM exciter provides a stable signal amplified to 20 watts to drive the transmitter power amplifier. The power amplifier cavity contains a 5CX1500A vacuum tube operated class C to amplify the 20 -watt signal to output level. The amplified signal is passed through a low-pass filter to attenuate any harmonics or spurious radiation. The filtered signal is applied through a directional coupler to the antenna.

Power control and overload sensing circuits monitor the plate and screen power supply current and rf output levels. The power control circuits monitor dc analog voltage samples of forward and reflected power and raise or lower the plate and screen supply primary transformer voltage to maintain the rf output at a preset level. The overload sensing circuits detect any overload occurring in the plate and screen power supplies and remove power from these supplies by deenergizing the high-voltage contactor. Power for the power control and overload sensing circuits is provided by +28 - and +5 -volt dc power supplies.

3.2 CIRCUIT DESCRIPTION

For purposes of description, the transmitter can be divided into the following sections:

a. 310Z-2 FM Exciter
b. Amplifier

Figure 3-1. 831C-2 and 831D-2 Transmitters, Major Assemblies Location.

3-2

If You Didn't Get This From My Site,
Then It Was Stolen From...

Figure 3-2. 831C-2/831D-2 Transmitters, Simplified Block Diagram.
c. Control Circuits
d. Power Supplies
e. AC Distribution
3.2.1 310Z-2 FM Exciter

Refer to the 310Z-2 FM Exciter instruction book furnished as an element to this instruction book.

3.2.2 Amplifier Section

The amplifier section consists of a power amplifier cavity, a harmonic filter, and a
directional coupler.

Refer to figure 3-3.

3.2.2.1 Power Amplifier Cavity

The output of the FM exciter is coupled through capacitor A1A6C5 to a 5CX1500A pentode operated in class C mode. A1A6C5 acts as a drive level control by matching the output impedance of the exciter (50 ohms) to the input impedance of the 5CX1500A. The input tank circuit of the 5CX1500A is determined by a paralle1 resonant grid tank circuit composed of capacitors A1A6C4 and A1A6L9, which is formed with two parallel bars shorted by a movable slider.

The internal capacity of the tube socket, choke A1A6L6, choke A1A6L7 and feedthrough capacitor A1A6C1, bypass and decouple the screen. The rf output from the plate of the 5CX1500A is coupled through dc blocking capacitor A1A6C11 to the output tank circuit composed of A1A6C9 and a foreshortened quarter-wave section of transmission line A1A6L10 shorted by a movable plate. Capacitor A1A6C11 is formed by two concentric metal sleeves with Teflon dielectric between them.

The plate TUNE switch A1S7 on the control panel controls tuning motor A1A6B1 to drive tuning capacitor A1A6C9 in the cavity. The plate LOAD switch A1S8 on the control panel controls loading motor A1A6B2 to drive capacitor A1A6C10 in the cavity. Limit switches on motors A1A6B1 and A1A6B2 prevent excessive travel of the capacitors.

Excellent shielding is provided between the plate and control grid of the 5CX1500A, therefore no neutralization is used or is needed.

3.2.2.2 Harmonic Filter

The rf output from the plate tank circuit is applied to harmonic filter FL1. FL1 consists of two series-resonant, M-derived, low-pass end half-sections and a constantK T center section. The plate tank circuit, L-section L8, and capacitor C27 combined with the harmonic filter provide at least $77-\mathrm{dB}$ attenuation to all main-carrier harmonics through the 10 th harmonic. Maximum attenuation occurs at the second harmonic frequency.

3.2.2.3 Directional Coupler

The output of harmonic FLI is applied to directional coupler DC1. The directional coupler provides an rf output to the antenna and dc analog voltage samples of the forward and reflected power to the power control circuits.

3.2.3 Control Circuits

3.2.3.1 General

The control circuits of the 831C-2/831D-2 transmitter provide automatic switching sequence to take the transmitter to full power, to shut down the transmitter, adjustment for power output, automatic recycle and overload talley (optional), and variable plate and screen voltage control. Overload sensing circuits monitor the plate and screen current and the reflected power from the antenna.

Figure 3-3. Power Amplifier, Simplified Schematic Diagram.

The control circuits include the following circuit cards:
A1A1 Control Circuit Card
A1A2 Overload Tally/Recycle Card (optional)
A1A3 Power Monitor Card
A1A4 Power Control Card
Additional control circuitry is provided in the A2A1 control circuits/low-voltage power supply board assembly and various relays, air switches, and interlock switches.

Most functions in the control circuits utilize common 4700 series TTL integrated circuit logic.

3.2.3.2. Control Circuit Card

The basic on/off and overload circuits are contained on control circuit card A1A1, which is a single plug-in card located in the front-panel card cage of the transmitter.

Refer to figure 3-4.
Integrated circuit U1 is a 4-section NOR gate used as an inverter for filament and plate on/off commands. When a filament on command is applied at pin 15, the output of U1A goes to a low state which sets flip-flop U2A and causes the Q output to rise to a high leve1. The Q output is routed to NAND gate U3A and NOR gate U5A. The output of U5A is directly coupled to both inputs of U5B which inverts the U5A output and causes the output to go to a high state which appears on pin L of the card. The output from pin L is connected through A2TB2 to the control circuits/low-voltage power supply card A2A1. Transistor Q6 on the A2A1 assembly turns on and energizes relay A2K1 which turns on the blower and the primary of a regulator transformer for the power amplifier filament supply. When the blower comes up to speed, air pressure switch A1A6S7 closes and completes a circuit to pin 12 of the A1A1 card. This is a high input which combines with the high output from U2A to produce a low output at U3A. This low output is then fed to NAND gate U3B and timer U6. NAND gate U3B is used as an inverter and presents a high signal to transistor A4 on the A2A1 assembly. Q4 serves as a current amplifier to fire triac Q5 to turn on the PA tube amplifier.

When the filaments are turned off, timer U4 in conjunction with gate U5A provides a timed interval for blower turn-off to allow cooling.

Refer to figure 3-5.
Timer U6 functions as a plate-on time delay, with its output coupled to a flip-flop formed by U3C and U3D. When the time delay has elapsed, an input to NAND gate U7A is readied in the high state. The interlock input through pin D and the plate-on input from flip-flop U2B must also be in the high state for the plate supply to be energized. U2B is set by application of a plate-on command through pin B. With the three inputs to UTA high, its output is low. The UTA output is inverted by U7B and applied to transistor Q4 and through pin 3 to transistor Q7 in the control circuit/lowvoltage power supply board assembly (A2A1). The output from Q4 removes the mute voltage from the 310Z-2 exciter, initiates a ramp start voltage for power control A1A4, and lights the PLT ON indicator in the A1S4 pushbutton. Q7 acts as a current amplifier for triac Q8. When Q8 fires, K2 is energized, and primary voltage is applied through SCR's A3Q1 and A3Q2 to the plate and screen supply transformer primaries.

Figure 3-4. Filament and Blower Control, Simplified Schematic Diagram.

Figure 3-5. Plate Control, Simplified Schematic Diagram.

Refer to figure 3-6.

Overload circuitry is supplied for three functions in the transmitter; plate current, screen current, and vswr.

Overload circuitry for the plate current, in the event of plate overload, shuts down the transmitter, illuminates a fault indicator, and develops a pulse for automatic recycling. A.small sample of voltage derived from a shunt resistor in the return leg of the plate power supply is applied through pin 22 to R42. When sufficient voltage is developed across R42 to constitute an overload condition, transistor Q5 turns on, providing an input to amplifier U8A.

Amplifiers U8A and U8B serve as high-gain amplifiers to square-up the transitions between on and off states of Q5 and provide a sharp edge on the transitions. The output of U8B goes to a low state for the duration of an overload and is applied to pin U for use in fault location and through diode CR6 to gate U7C. The U8B output is inverted by U7C and applied to NOR gate U1D and to gate U5D. U1D supplies a plate-off command to turn off the high-voltage supply and U5D develops a trigger pulse to be used for automatic recycling, if equipped. A high state at the output of U7C also fires SCR Q9 to illuminate front-panel fault indicator DS16.

The screen current and vswr overload circuits operate in a similar manner.

3.2.3.3. Optional Overload Tally/Recycle Card

Refer to the 831C-2/831D-2 schematic diagram in the rear of this instruction book.
Overload tally/recycle card A1A2 is an optional plug-in circuit card that when used, serves two functions in the transmitter. It will automatically restart the transmitter up to four times within a $30-$ second interval, and will provide a memory and fault indicator function of which overload caused an outage. The fault indicator lamps will remain on after the transmitter automatically returns to the air, until manually cleared by the operator.

During an overload condition, a trigger pulse generated by the overload circuits is applied through pin 12 to timers U1 and U3 and gates U6A through U6D. Timer U1 generates a $1 / 2$-second delay which is used to trigger timer U2, and is also applied to gate U5A. U2 generates a short pulse which is applied to gate U5D and a plateon command is generated via transistor Q2. The plate-on command is applied to the A1A1 card to restart the plate circuit.

Timer U3 generates a pulse approximately 30 seconds in length which enables counter U4. When a restart pulse is generated by timer U1, it is fed through gate U5A to the trigger input of counter U4. Output B (2-shot recycle) of U4 will be high when a count of two is received, and output C (4 -shot recycle) will be high when a count of four is received. A high output from U4 causes the outputs of inverters U5B and U5C to go low. Gate U5B will inhibit any further attempts to increase the count in counter U4, and U5C will inhibit any further recycle attempts. When approximately 30 seconds has elapsed since the first recycle attempt, timer U3 times out and its output goes low and resets the count in counter U4 to zero which clears gates U5B and U5C. The recycle circuit is then clear and will repeat as needed.

The trigger pulse that activates the recycle circuits is also applied to NOR gates U6A, U6B, U6C, and U6D. When both inputs to a given NOR gate are low,

Figure 3-6. Overload Sensing, Simplified Schematic Diagram.
its output is high which causes the associated SCR (Q3, Q4, Q5, or Q6) to fire, lighting the appropriate LED (CR2, CR3, CR4, or CR5) to indicate the source of the overload. The indicators are manually reset by pressing the FAULT pushbutton.

3.2.3.4. Power Monitor Card

Power Monitor Card A1A3 provides for calibration of the POWER OUTPUT meter (paragraph 4.9.5) and adjustment of the automatic power control system (paragraph 4.9.8). In addition, the power monitor card amplifies the low level forward and reflected power outputs from the directional coupler, to drive remote forward and reflected power indicators in any common remote control system.

Refer to figure 3-7.
The operating mode (automatic or manual) is selected by MANUAL/AUTO CONTROL switch A1S10 located on the front panel. Switch A1S10 controls a switching circuit consisting of integrated circuit U4 and transistors Q1 and Q2. In the automatic mode Q1 is off and Q2 is on, and in manual mode Q1 is on and Q2 is off.

In the automatic mode, the forward power sample from the directional coupler is applied to operational amplifier U1. U1 operates at a fixed gain and produces an output on the order of 1 to 5 volts dc. The output of $U 1$ is applied to pin $10 / \mathrm{C}$ for remote use, and is also summed with a negative dc reference voltage through APC control R13, producing a positive voltage at the output of U3. The output of U3 is coupled through resistor R21 and diode CR3 to transistor Q4. The Q4 output is fed to power control card A1A4 which develops the firing pulses for SCR's A3Q1 and A3Q2 to regulate the power amplifier plate and screen voltages.

In the manual mode, an external power control voltage derived from motor-driven potentiometer A1A5R2 fed from the internal 28-volt power supply, is coupled through resistor R29 and diode CR4 to transistor Q4.

A soft-start circuit consisting of transistor Q3 and its associated components is driven from the A1A1 card, and is turned off when plate voltage is turned on. A ramp voltage is generated through the time constant of R21 (automatic mode) or R29 (manual mode) and R25, R27, and C14, which slowly brings plate voltage up from zero to normal.

The reflected power sample from the directional coupler is applied to operational amplifier U2. U2 is a fixed-gain amplifier and its output is available for remote use and is also fed through switch $\$ 1$ to the vswr overload input of the A1A1 card for vswr protection.

3.2.3.5 Power Control Card

Power Control Card A1A4 supplies a pair of pulses to power control SCR's Q1 and Q2 in the A3A2 Component Assembly. The firing angle of Q1 and Q2 is related to the zero crossing of the ac power lines, and is directly controlled by the dc input voltage. In this manner, the output voltages of the plate and screen power supplies may be adjusted from approximately 50 percent to a full rated power.

3.2.4. Power Supplies

The 831C/D-2 transmitters contain the following power supplies:

Figure 3-7. Power Control, Simplified Schematic Diagram.

```
28-volt dc control
5-volt dc logic
-120-volt dc bias
-28-volt dc control
Power amplifier screen
Power amplifier plate
Power amplifier filament
Ac distribution
```


3.2.4.1 28- and 5-Volt DC Power Supplies

The 28 -volt and 5 -volt power supplies are derived from a common transformer, rectifier, and filter system. It is a full-wave bridge circuit with a capacitor input filter. The 28 -volt supply is regulated by zener diode A2A1VR2 in conjunction with amplifier transistor A2Q2 and pass transistor A2Q1. Short-circuit protection is provided by diodes CR8, CR9, CR10 and resistors R16 and R17 on the A2A1 assembly. The 28 -volt supply furnishes power for relay $A 2 K 1$ and all cards requiring +28 volts.

The 5 -volt supply is obtained from the 28 -volt supply through 3 -terminal regulator A2U1. Batteries BT1 through BT4 are provided as a backup 5-volt supply to maintain the control logic circuitry during a power outage. The batteries are of the alkaline rechargeable type, and are floated on a constant current trickle charger composed of A2A1Q3 and its associated components. In the event of a power failure, the transmitter will restart automatically upon resumption of power, and will be in the same operating mode which existed at the time of power failure.

3.2.4.2. -120-Volt DC Bias Supply

Refer to figure 3-8.
The -120 -volt bias supply is a conventional half-wave rectifier with capacitor input filter and with an LC filter following, that provides protective bias in the absence of excitation. Applying excitation causes grid current to flow through A1A6R1, A2A1R14, A2R10 bias adjust and A2R11. This creates a grid leak bias that exceeds the fixed bias from the power supply. In normal operation A2CR3 is reverse biased because the grid leak bias is greater than the bias supply voltage. The bias supply protects the tube from excessive plate dissipation in case grid leak bias is lost. BIAS ADJUST control A2R10 determines the amount of current that will flow in the grid circuit and hence determines the actual operating point of the 5CX1500A. Primary line voltage for the -120 -volt bias supply is derived from the secondary of the filament regulator transformer.

3.2.4.3. -28-Volt DC Control Supply

Refer to figure 3-4.
The -28 -volt dc control supply is a half-wave supply and provides the negative voltage required for operational amplifiers in the power monitor and power control cards. The control supply is fed from one side of the primary ac power line, rectified by diode CR4, controlled by resistor R8, and switched by relay A2K1.

3.2.4.4 Power Amplifier Screen Supply

Refer to figure 3-9.

Figure 3-8. Bias Circuit, Simplified Schematic Diagram.

The power amplifier screen supply provides approximately 460 volts dc (for 831C-2) or 500 volts dc (for 831D-2) to the power amplifier screen grid and consists of transformer A2T2 with an associated full-wave bridge rectifier and a double section choke input filter. The screen supply voltage is adjusted by SCRN ADJ rheostat A2R1. Primary power for the supply is derived from the power line through contactor A2K2 and SCR's A3Q1 and A3Q2.

3.2.4.5 Power Amplifier Plate Supply

Refer to figure 3-10.
The power amplifier plate supply is a conventional full-wave bridge supply with a 2-section LC filter, and supplies approximately 3000 volts dc (for 831C-2) or 4500 volts dc (for 831D-2) to the power amplifier plate circuit. The supply is fed from the same circuit as the power amplifier screen supply.
3.2.4.6 Power Amplifier Filament Supply

Refer to figure 3-4.
Connections for local and remote metering of filament voltage are shown in figure 3-11.

3.2.5 AC Distribution

Figure $3-12$ is a simplified schematic of primary ac distribution in the 831C-2/ 831D-2 transmitters. All circuit breakers are open and all contactors are deenergized.

Figure 3-9. Power Amplifier Screen Power Supply and Metering, Simplified Schematic Diagram.

Figure 3-10. High-Voltage Power Supply and Power Amplifier Metering, Simplified Schematic Diagram.

Figure 3-11. Power Amplifier Filament Metering, Simplified Schematic Diagram.

Figure 3-12. Primary AC Power Distribution, Simplified Schematic Diagram.

4.1 GENERAL

The 831C-2/831D-2 has been carefully inspected and adjusted at the factory to reduce maintenance to a minimum. However, to ensure peak performance, adhere to a regular schedule of inspection and cleaning procedures. Refer to the parts list, section 5 , for the locations of components in the 831C-2/831D-2.
WARNING

HIGH VOLTAGE is used in this equipment.
DEATH ON CONTACT may result if you fail to observe safety precautions.
When working inside the equipment, be sure that all circuit breakers are off and that primary power is disabled at the wall disconnect or circuit breaker, unless otherwise directed. If a procedure requires transmitter operations with access panels removed, do not allow bodily contact with any electrical component, tap, or terminal, Use heavily insulated tools to adjust variable components.

CAUTION

Make certain all meters and test equipment are switched to appropriate measuring scales before connecting them to the transmitter. Connect test equipment only to the terminals designated in the procedure.

4.2 INSPECTION

Perform periodic visual inspection of the 831C-2/831D-2 at least once each week. Inspect all metal parts for rust, corrosion, and general deterioration. Check wiring and components for signs of overheating. Check the blower and cabinet fan for normal operation. Check all operating controls for smoothness of operation. Check all connections and tighten any loose nuts, bolts, or screws. Periodically check the plastic air hose that runs from the grid tuning compartment to the harmonic filter for signs of cracks or other deterioration. Periodically check the cloth air duct connecting the blower outlet to the PA grid compartment for leaks, deterioration, or blockage.

4.3 CLEANING

Clean the 831C-2/831D-2 whenever a perceptible quantity of dust accumulates at any point inside the equipment. A solvent consisting of the following mixture may be used as a cleaning material: methylene chloride (25 percent), perchloroethylene (5 percent), and drycleaning solvent (70 percent by volume).

4.3.1 General Cleaning Procedure

a. Remove dust from chassis, panels, and components with a soft-bristle brush.
b. Remove any foreign matter from flat surfaces and accessible areas with a lintless cloth moistened with solvent. Dry with a clean, dry, lintless cloth.
c. Wash switch contacts and less accessible areas with solvent lightly applied with a small soft-bristle brush.
d. Clean accumulated dust from power amplifier tube radiating fins (after removing the tube from its socket as outlined in paragraph 4.10.1) with a dry, oil-free jet of air.

4.3.2 Air Filter

The air filter supplied with the transmitter is a 16 - by 20 - by 1 -inch disposable commercial filter. Replace the air filter whenever a noticeable quantity of dust or dirt restricts air flow, as follows:
a. Remove the two screws retaining the expanded metal filter panel to the rear cabinet panel.
b. Extract the filter from its holder and discard.
c. Install a new 16 - by 20 - by 1 -inch disposable commercial filter.
d. Replace the expanded metal panel and two screws.

4.4 LUBRICATION

The 831C-2/831D-2 transmitter requires no lubrication. All motor bearings are permanently lubricated and sealed.

4.5 TROUBLESHOOTING

If the transmitter fails to operate properly, isolate the malfunction to a particular circuit using the TEST METER readings (table 2-2 or 2-3), maintenance checks in paragraph 4.7, and simplified diagrams in section 3. Check each circuit in the order that it is made operative. If a malfunctioning circuit has an adjustment procedure provided in paragraph 4.8, perform the adjustment. Refer to the circuit descriptions in section 3 for aid in troubleshooting. Refer to the parts list in section 5 for parts locations.

4.6 TEST EQUIPMENT

Table 4-1 lists test equipment necessary for transmitter maintenance checks and adjustments.

CAUTION

Make certain all meters and test equipment are switched to appropriate measuring scales before connecting them to the transmitter. Connect test equipment only to the terminals designated in the procedure.

4.7 MAINTENANCE CHECKS

WARNING

HIGH VOLTAGE is used in this equipment.
DEATH ON CONTACT may result if you fail to observe safety precautions.

Table 4-1. Test Equipment.

ITEM	RECOMMENDED MANUFACTURER/MODEL
Dummy Load, 50 ohms 2.5 kW Thruline Wattmeter, $2.5 \mathrm{~kW} /$ 250 W Thruline Wattmeter Volt-Ohm-Milliammeter ACVM, 0 to 25 V and 0 to 250 V (1\% Accuracy) 0 to 28 V DC Power Supply (at least 1 ampere)	Bird Model 8892 Bird Model 7712 (with 250B1 and 2500B1 Elements) Bird Model 43 (with 25 W Element) Triplett No. 630

When working inside the equipment, be sure that all circuit breakers are off and that primary power is disabled at the wall disconnect or circuit breaker unless otherwise directed. If a procedure requires transmitter operation with access panels removed, do not allow bodily contact with any electrical component, tap, or terminal. Use heavily insulated tools to adjust variable components.

4.7.1 Preliminary Setting

Remove circuit cards A1, A2, A3, and A4 from card cage in A1 front pane1. Remove control, bias, blower, and screen fuses.

Operate LOW VOLTAGE circuit breaker AICB1 to off. Operate HIGH VOLTAGE circuit breaker AlCB2 to off.

4.7.2 Batteries

Insta11 a charged set of batteries (BT1, BT2, BT3, and BT4).

NOTE

Low batteries may be recharged by installing the batteries, replacing control fuse (F1), and returning LOW VOLTAGE circuit breaker A1CB1 to ON position for approximately 10 to 12 hours.

4.7.3 Fuses

Visually inspect the fuses for correct ratings and type. All are slow-blow type.

FUSE	FUNCTION	RATING
	F1	Control
F2	Bias	0.5 A SB
F3	Blower	0.5 A SB
F4	Screen	2.0 A SB
		1.0 A SB

Replace control fuse F1.

4.7.4 28-Volt Power Supply Checks

a. Operate LOW VOLTAGE circuit breaker A1CB1 to ON.
b. Switch TEST METER switch A1S6 to 28 V position. TEST METER A1M1 should read 27 to 30 volts.
c. Verify TEST METER indication with volt-ohm-milliammeter connected between A2A1-E1 (+) and GNU (-).

4.7.5 5-Volt Power Supply Checks

a. Switch TEST METER switch A1S6 to 5 V position. TEST METER A1M1 should indicate 5 volts.
b. Verify TEST METER indication with volt-ohm-milliammeter connected between A2TB2-3 (+) and GND (-).
c. Operate LOW VOLTAGE circuit breaker A1CB1 to OFF.
4.7.6 Transmitter Recycle Checks

The following procedure checks the automatic sequencing to on and to off of the transmitter.

NOTE

All access panels must be closed before performing the following procedure.
a. Install control circuit card A1A1 in card cage.
b. Switch RECYCLE switch on A1A1 card to OFF.
c. Insert blower fuse F3.
d. On the 310Z-2 exciter, switch POWER switch to OFF.
e. Switch LOW VOLTAGE circuit breaker A1CB1 to ON. FIL OFF and PLT OFF lamps should light. The blower may start, run 30 seconds or less, and shut off, depending on status of control circuit card A1A1.
f. Press FIL ON pushbutton. The blower should start, and when up to speed, FIL ON lamp should light. If the FIL ON lamp does not light, perform adjustments in paragraphs 4.8.1 and 4.8.2.
g. Press the PLT ON pushbutton. After a $30-$ to $45-$ second delay, the PLT ON lamp should light and plate contactor A2K2 should close. If necessary, adjust time delay adjust resistor A1A1R29 for the desired length of plate-on delay.
h. Press PLT OFF pushbutton. Plate contactor A2K2 should open, the PLT ON lamp should extinguish, and the PLT OFF lamp should light.
i. Press FIL OFF pushbutton. The FIL ON lamp should extinguish. The blower will run for approximately 30 seconds (not adjustable) before turning off.

4.7.7 Interlocks

The following procedure checks the operation of the four interlock switches for the access panels and compartment doors.
a. Press PLT ON pushbutton. After the PLT ON lamp has lighted, proceed to step b.
b. Open and close, one at a time, the lower front power supply and rear power supply access panels, and upper power amplifier cavity compartment door. As each access panel or compartment door is opened, the PLT ON lamp should extinguish and the PLT OFF lamp should light. As each panel or door is closed, the PLT OFN
lamp should be reestablished.
c. Open and close the lower power amplifier cavity compartment door. As the door is opened, the FIL ON and PLT ON lamps should extinguish, and the FIL OFF and PLT OFF lamps should light. As the door is closed, the FIL ON lamp should reestablish, and after the plate-on time delay, the PLT ON lamp should reestablish.

4.8 LOW LEVEL ADJUSTMENTS

WARNING

HIGH VOLTAGE is used in this equipment.
DEATH ON CONTACT may result if you fail to observe safety precautions.
When working inside the equipment, be sure that all circuit breakers are off and that primary power is disabled at the wall disconnect or circuit breaker unless otherwise directed. If a procedure requires transmitter operation with access panels removed, do not allow bodily contact with any electrical component, tap, or terminal. Use heavily insulated tools to adjust variable components.

4.8.1 Air Switch Adjustment

a. Remove power to the transmitter, and open circuit breaker A1CB1.
b. Open the lower power amplifier compartment door, and connect an ac voltmeter (0 - to -25 -volt scale, 1 -percent accuracy) across the power amplifier filament leads at the tube socket.
c. Close the compartment door as far as possible. Ensure the interlock is closed.
d. Apply power and close circuit breaker A1CB1.
e. Open the door approximately 1 inch while manually holding the interlock closed. Adjust air switch A1A6S7 (adjustment screw on bottom rear of switch) so that filament power is removed from the tube.
f. Perform adjustment in paragraph 4.8 .2 before removing ac voltmeter.
4.8.2 Filament Voltage Checks and Adjustment
a. With power applied and filaments on, rotate FIL ADJUST control A1R1 from minimum to maximum. Minimum voltage should be less than 4.5 volts and maximum voltage should be more than 5.15 volts, as read on ac voltmeter.
b. Set filament voltage at 5 volts.
c. Switch TEST METER switch A1S6 to FIL position.
d. Adjust FIL MASTER CAL control R28 on the A2A1 control circuit low voltage power supply board assembly until the TEST METER indication is the same as read on the ac voltmeter.
e. Remove power to the transmitter open circuit breaker A1CB1, and disconnect the ac voltmeter connected in paragraph 4.8.1, step b.

4.8.3 Preliminary Power Amplifier Bias Adjustment

a. Install bias fuse F2.
b. Apply primary power to the transmitter and close circuit breaker A1CB1.
c. Press FIL ON pushbutton.
d. Switch TEST METER switch A1S6 to BIAS position.
e. Observe the indication on TEST METER while varying BIAS ADJ control A2R10 from minimum to maximum. The indication should vary from less than 95 volts to more than 100 volts. Set voltage at 95 volts.
f. Connect a volt-ohm-miliammeter from A1A6-C2(-) to GND (+) and verify TEST METER indication.

4.8.4 Power Amplifier Tuning and Loading Control Checks

a. Operate plate TUNE control A1S7 and observe that limit switches A1A6S3 and A1A6S4 shut off tuning motor A1A6B1 to limit travel of tuning capacitor A1A6C9. In the up (increase) position, the capacitor plate moves toward the cavity center conductor.
b. Similarly operate plate LOAD control A1S8 and observe that limit switches A1A6S5 and A1A6S6 shut off tuning motor A1A6B2 to limit travel of capacitor A1A6C10.
c. Remove primary power and open circuit breaker A1CB1
4.8.5 Preliminary Overload Adjustment
NOTE

HIGH VOLTAGE circuit breaker A1CB2 must remain off during the following preliminary adjustments.

4.8.5.1 Power Amplifier Plate

a. With primary power removed and circuit breaker A1CB1 open, connect a variable 9 -volt source between A3TB1-17(-) and GND (+).
b. Adjust the 9 -volt source for a $700-\mathrm{mA}$ indication for the 831C-2 transmitter or $850-\mathrm{mA}$ for the 831D-2 transmitter, as read on PLATE CURRENT meter A1M3.
c. Apply primary power and close LOW VOLTAGE circuit breaker A1CB1.
d. Adjust PA PLT overload control R42 on the A1Al control circuit card until the plate relay opens, as indicated by PA PLATE lamp on tally/recycle card coming on.
e. Remove the 9 -volt source and rescet the overload indicator by pressing the FAULT pushbutton.
f. Remove primary power and open circuit breaker A1CB1.

4.8.5.2 Power Amplifier Screen

a. With primary power removed and circuit breaker AICB1 open, connect the variable $9-v o l t$ source between A2TB3-1(-) and GND (+).
b. Adjust the $9-v o l t$ source for an indication of 125 mA , as read on TEST METER A1M1 with TEST METER switch A1S6 in SCRN1 position.
c. Apply primary power and close circuit breaker A1CB1.
d. Adjust PA SCRN overload control A1A1R47 until the plate relay opens, as indicated by the PA SCRN lamp on the tally/recycle card coming on.
e. Remove the 9 -volt source and reset the overload indicator by pressing the FAULT pushbutton.
f. Remove primary power and open circuit breaker A1CB1.

4.8.5.3 VSWR

a. Ensure primary power is removed and circuit breaker AICB1 is open.
b. Extend the A1A1 control circuit card on card extender. Ensure that switch S1 on power monitor card is in ON position.
c. Apply primary power and close circuit breaker A1CB1.
d. Press PLT ON pushbutton.
e. After PLT ON lamp lights, with the variable 9-volt source apply 2 volts across A1A1 pin $Y(+)$ and GND (-).
f. Adjust vswr overload control A1A1R56 until vswr lamp on the tally/recycle card lights.
g. Remove the 9 -volt source and reset the overload indicator by pressing FAULT pushbutton.
h. Remove primary power, open circuit breaker A1CB1, and remove extender card.

4.8.6 Tally/Recycle Card Checks

Tally/recycle card A1A2 is an optional card and, when used, provides automatic 2shot or 4 -shot recycle starting (dependent on card strapping) and individual fault tally readouts for plate current, screen current, and vswr overloads. If the tally/ recycle card is not used with the transmitter, recycle switch S1 on the A1A1 control circuit card must be switched to OFF.

The following procedure checks the tally/recycle card for proper recycling operation.
a. Remove primary power to the transmitter and npen LOW VOLTAGE circuit breaker A1CB1 and HIGH VOLTAGE circuit breaker A1CB2.
b. Install tally/recycle card A1A2 in card cage.
c. Apply primary power to transmitter and close only LOW VOLTAGE circuit breaker AlCB1.
d. Pres.s PLT ON pushbutton.
e. Set recycle switch A1A1S1 to ON.
f. After the plate-on time delay has timed out and plate contactor A2K2 has closed, proceed with step g.
g. Momentarily simulate any one of the three overloads simulated in paragraphs 4.8.5.1, 4.8.5.2, or 4.8.5.3. After a momentary overload the transmitter will apply a restart pulse within approximately 1 second closing contactor A2K2.
h. Momentarily apply a second simulated overload. The transmitter will restart as in step g .
i. Momentarily apply a third simulated overload. The transmitter will not restart and will remain off if the third overload occurred within a 30 -second time frame.

NOTE
The transmitter may be started manually by pressing the PLT ON pushbutton. If nonsimulated overload condition persists, the transmitter will merely overload and shut down. After 30 seconds following initial overload, the recycle circuit resets automatically and is again ready to supply two or four restarts (depending on the tally/recycle card strapping).
j. Press the FAULT pushbutton to extinguish tally lamp lights during simulated overload.
4.8.7 Power Monitor Card, Preliminary Checks and Adjustments
a. Remove primary power and open circuit breakers A1CB1 and A1CB2.
b. Install power monitor card A1A3 in card cage.
c. Apply primary power and close only LOW VOLTAGE circuit breaker A1CBI.
d. Press FIL ON pushbutton.
e. Insert volt-ohm-miliammeter (set on 1.2-mA scale) between TP1 (red) and TP5 (black). Adjust resistor R37 and progress to $60-\mu a$ scale as Ul balance is achieved.
f. Move volt-ohm-milliammeter to TP2 (orange) and TP5 (black) and adjust resistor R38 to balance U2.

4.9 INITIAL POWER ADJUSTMENTS

HIGH VOLTAGE is used in this equipment.
DEATH ON CONTACT may result if you fail to observe safety precautions.
When working inside the equipment, be sure that all circuit breakers are off and that primary power is disabled at the wall disconnect or circuit breaker unless otherwise directed. If a procedure requires transmitter operation with access panels removed, do not allow bodily contact with any electrical component, tap, or terminal. Use heavily insulated tools to adjust variable components.

4.9.1 Static Plate Current

Replace screen fuse F1, close HIGH VOLTAGE circuit breaker A1CB2, and press the PLT ON pushbutton. Note that plate current as read on the PLATE CURRENT meter is approximately 200 mA , or less. The 310Z-2 POWER switch is switched to OFF, and no drive is present.

4.9.2 310Z-2 FM Exciter

With HIGH VOLTAGE circuit breaker A1CB2 in the OFF position, apply primary power. Tune the exciter as per 310Z-2 section of this book.

4.9.3 Grid Tuning

a. Insert Thruline wattmeter with 25-watt element between the 310Z-2 output and the input to the power amplifier grid.
b. Apply a 5- to 10-watt (or enough to allow adjustment) rf signal to the power amplifier grid.
c. Adjust power amplifier GRID TUNING control A1A6C4 and the coupling for peak grid current at minimum swr.

iNOTE

Set Thruline wattmeter for reflected component. Several adjustments will be necessary as there is considerable interaction. Final adjustment will be necessary after the power amplifier plate voltage is applied.
d. Reduce power amplifier drive (310Z-2 output) to minimum.

4.9.4 Power Amplifier Tuning

a. Close HIGH VOLTAGE circuit breaker A1CB2.
b. Raise the drive level to approximately 10 watts.
c. Adjust TUNE control A1S7 for minimum plate current.
d. Increase and decrease LOAD control, retuning each time for minimum plate current.

NOTE

The TUNE and LOAD controls interact, thus adjusting one will require adjustment of the other. Refer to tables 2-2 and 2-3 for typical operating readings.
e. Increase the drive level to at least 20 watts, and readjust both TUNE and LOAD controls until rated transmitter power output is attained.

HOTE
In following paragraphs 4.9.5 and 4.9.6, 100 -percent reading on POWER OUTPUT meter A1M4 must be set to correspond to station authorized power.

4.9.5 POWER OUTPUT Meter Adjustments

a. Set REFL/FWD POWER switch A1S11 to FWD.
b. Using a calibrated Thruline wattmeter together with a 50 -ohm dummy load as a standard, adjust FWD CAL control A1A3R1 until the transmitter POWER OUTPUT meter indication is the same as the calibrated meter.
c. Reduce power output to 10 percent (as read on POWER OUTPUT meter) and note exciter drive, transmitter grid current, plate current, and plate voltage.
d. Remove primary power to the transmitter.
e. Remove and invert (in transmission line) directional coupler A1DC1.
f. Restore transmitter power, and re-establish same conditions as in step c., above.
g. Set REFL/FWD POWER switch A1S11 to REFL position and adjust REFL CAL control A1A3R4 for a 10 -percent (0 - to 12 -percent range) indication on POWER OUTPUT meter.

NOTE
In absence of calibrated Thruline wattmeter, use efficiency factors in figure 2-5 or 2-6 to determine transmitter output power, using equation: $E_{p} \times I_{p} \times \operatorname{EFF}$ FACTOR (F) $=$ POWER OUTPUT.

Before returning the directional coupler to normal direction in transmission line, perform procedure in paragraph 4.9.6.

4.9.6 Reflected Power Overload Checks

a. Operate vswr switch A1A3S1 to ON.
b. With the transmitter operating at 10 percent (125 watts for $831 \mathrm{C}-2,250$ watts for 831D-2), adjust vswr overload control A1A1R56 until the transmitter vswr overload trips.
c. Remove primary power and restore directional coupler A1DC1 to normal direction.
d. Restore power (1250/2500 watts; 100 percent), and note whether reflected position is less than 1 percent (occurs only with a purely resistive 50-ohm dummy load).

4.9.7 Manual Power Control

With REMOTE/LOCAL CONTROL switch in LOCAL position, operate RAISE/LOWER POWER switch A1S12 and check that power output can be varied from approximately 50 -percent power to 105-percent power (1312/2625 watts, maximum).

4.9.8 Automatic Power Control

Place MANUAL/AUTO CONTROL switch A1S10 in AUTO, and adjust APC control A1A3R13 until transmitter is delivering station authorized power with nominal line voltage.

4.9.9 Monitor Output

Connect a section of RG58U line terminated with a 50 -ohm load to MONITOR SAMPLE jack A1A6J2. With normal power out, adjust the pickup coil inside the cavity to obtain a 6 - to 10 -volt output at A1A6J2. Move the line to MONITOR SAMPLE jack A1A6J3 and adjust coil to obtain a 6- to 10 -volt output at A1A6J3.

4.10 REPLACEMENT OF PARTS

4.10.1 5CX1500A Tube
a. Open the plate cavity access panel.
b. Lift the blocking capacitor covering the anode of the tube.
c. Remove the plate lead.
d. Turn the tube counterclockwise in its socket to the unlocked position, and lift the tube straight up and out.
e. To insert a replacement tube, reverse the procedure.
4.10.2 FIL OFF, FIL ON, PLT OFF, PLT ON, and FAULT Indicator Lamps
a. Pull out on the switch to remove the indicator button.
b. Compress bulb holder springs at the sides and remove holder with bulbs.
c. Replace bulbs, reinsert bulb holder.
d. Place indicator button over the switch and press in firmly to seat.
4.10.3 Fuses

Push in on fuse assembly; rotate counterclockwise and remove the assembly. Replace the fuse, reinsert fuse assembly, push in on the assembly, and rotate clockwise.

4.11 CHANGE OF FREQUENCY

A11 831C-2/831D-2 transmitters are factory adjusted for the specific customer's frequency requirements. To change frequency first follow the procedure for tuning the 310Z-2 exciter as outlined in the exciter section of this manual. The power amplifier is tuned per paragraph 2.4.2, steps d. through j., using figure 2-4 and paragraph 2.5.2, step q. Use typical meter readings tables 2-2 and 2-3 to establish normal operation.

5.1 GENERAL

This section contains parts lists and parts locations for electrical components of the 831C-2 and 831D-2 transmitters. Figures 5-1 through 5-4 provide general views of the transmitters with various access panels removed. The remaining figures, with corresponding parts lists, identify electrical components. Figures and parts lists are sequenced according to assembly reference designation.

5.2 ORDERING REPLACEMENT PARTS

Refer to information provided inside the front cover for instructions for ordering replacement parts.

Figure 5-1. 831D-2 2.5-KW FM Transmitter, Front View
(Typical for 831C-2 1.25-KW FM Transmitter).

MW100-0222-RP
Figure 5-2. 831D-2 2.5-KW FM Transmitter, Front View With Access Panels Removed (Typical for 831C-2 1.25-KW FM Transmitter).

Figure 5-3. 831D-2 2.5-KW FM Transmitter, Rear View With Access Panel Removed (Typical for 831C-2 1.25-KW FM Transmitter.

Figure 5-4. 831D-2 2.5-KW FM Transmitter, Rear View Floor Mounted Components (Typical for 831C-2 1.25-KW FM Transmitter).

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
831C-2 1.25-KW FM TRANSMITTER 831D-2 2.5-KW FM TRANSMITTER		
A1	FRONT PANEL	632-0030-001
A2	SEE BREAKDOWN ON PAGE 5-7 CONTROL CIRCUITS AND LOW VOLTAGE POWER SUPPLIES SEE BREAKDOWN ON PAGE 5-30	632-0021-001
A3	HIGH VOLTAGE RECTIFIER ASSEMBLY SEE BREAKDOWN ON PAGE 5-38	632-0033-001
A4	REMOTE CONTROL ASSEMBLY (OPTIONAL) SEE BREAKDOWN ON PAGE 5-45	632-0071-001
A5	EXTENDER CARD	632-0062-001
B1	BLOWER, TUBE COOLING	009-1858-010
B2	FAN, CABINET FLUSHING	009-1801-010
DC1	DIRECTIONAL COUPLER	277-0445-010
J4	CONNECTOR (SEE FIGURE 5-9 FOR LOCATION)	357-9248-010
P1	CONNECTOR, POWER, 310Z-2 EXCITER	366-8060-000
P2	CONNECTOR, BNC, RF EXCITER	357-9292-000
R1	RESISTOR, 30 KILOHMS, 210 W	746-6827-000
R2	SAME AS R1	
R3	SAME AS R1	
T1	TRANSFORMER, FILAMENT REGULATOR	662-0292-050
	NOTE	
	THE FOLLOWING COMPONENTS ARÉ USED ONLY IN THE 831C-2 TRANSMITTER:	
CB2	CIRCUIT BREAKER, 20 AMP	
C1	CAPACITOR, $4.0 \mu \mathrm{~F}, 4 \mathrm{kV}$ SAME AS CI	930-0705-000
C2 L 1	SAME AS C1 CHOKE, 10 H	668-0022-000
L2	SAME AS LT	668-0022-000
T2	TRANSFORMER, HIGH VOLTAGE	662-0368-020
	NOTE	
	THE FOLLOWING COMPONENTS ARE USED ONLY IN THE 831D-2 TRANSMITTER:	
CB2	CIRCUIT BREAKER, 30 AMP	260-4052-010
C1	CAPACITOR, $8 \mu \mathrm{~F}$	930-0781-020
C2	SAME AS C1	
L1	CHOKE, 10 H	668-0161-010
L2	SAME AS L1	
T2	TRANSFORMER, HIGH VOLTAGE	662-0368-010

5-6

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
FRONT PANEL, A1		632-0030-001
AIA1 AlA2 A1A3 ATA4 A1A5 A1A6 C1 C2 C3 C4 CB1 F1 F2 F3 F4 M1 M2 M3 M4 R1 R2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 XF1 XF2 XF3 XF4	CONTROL CIRCUITS CARD SEE BREAKDOWN ON PAGE 5-1T OVERLOAD TALLY/RECYCLE CARD (OPTIONAL) SEE BREAKDOWN ON PAGE 5-17 POWER MONITOR CARD SEE BREAKDOWN ON PAGE 5-21 POWER CONTROL CARD CARD CAGE ASSEMBLY SEE BREAKDOWN ON PAGE 5-24 POWER AMPLIFIER CAVITY ASSEMBLY SEE BREAKDOWN ON PAGE 5-28 CAPACITOR, 100 PF SAME AS Cl SAME AS C1 SAME AS C1 CIRCUIT BREAKER, 5 AMP FUSE, . 5 AMP SAME AS FT FUSE, 2 AMP FUSE, 1 AMP MULTIMETER 1 MA FS 1500 OHMS $\pm 1 \%$ VOLTMETER, PLATE 6 KV FS $\pm 1 \%$ AMMETER, PLATE $0-1 \mathrm{~A} \pm 2 \%$ WATTMETER, RF RESISTOR, 15 OHMS, 100 W RESISTOR, 1740 OHMS SWITCH SAME AS S1 SAME AS S1 SAME AS S1 SAME AS 51 SWITCH SWITCH SAME AS S7 SWITCH SAME AS S7 SAME AS S9 SAME AS S7 FUSEHOLDER SAME AS XF1 SAME AS XF1 SAME AS XF1	$\begin{aligned} & 632-0013-001 \\ & 632-0013-001 \\ & 632-0010-001 \\ & 270-0313-010 \\ & 632-0031-001 \\ & 632-0039-001 \\ & 912-2816-001 \\ & \\ & 260-1964-000 \\ & 264-0293-000 \\ & 264-0294-000 \\ & 264-0295-000 \\ & 458-0859-010 \\ & 458-0859-020 \\ & 458-0859-090 \\ & 458-0859-100 \\ & 735-5201-020 \\ & 705-6758-000 \\ & 266-7509-020 \\ & \hline 265-1241-090 \end{aligned}$

Figure 5-5. Control Circuits Card.

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
CONTROL CIRCUITS CARD, ATAT 632-0007-001		
C1 C2 THRU C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 THRU C31 C32 C33 C34 CR1 CR2 THRU CR13 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14	CAPACITOR, 1.0 UF, 25 V SAME AS C1 CAPACITOR, 0.01 UF SAME AS C1 CAPACITOR, 10.0 UF, 20 V SAME AS C1 SAME AS C1 SAME AS CT3 SAME AS C1 CAPACITOR, 22 UF, 15 V SAME AS C1 CAPACITOR, 250 UF, 12 V SAME AS Cl SAME AS CT DIODE, 1 N914 SAME AS CRT TRANSISTOR, 2N3053 SAME AS Q1 SAME AS Q1 SAME AS Q1 TRANSISTOR, 2N2222A SAME AS Q5 SAME AS Q5 SAME AS Q5 SCR, C6F RESISTOR, 1500 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 330 OHMS, 1/4 W SAME AS R1 SAME AS R2 SAME AS R1 SAME AS R2 SAME AS R1 SAME AS R2 RESISTOR, 100 OHMS, $1 / 4 \mathrm{~W}$ SAME AS R9 SAME AS R9 SAME AS R9 RESISTOR, 1500 OHMS, 2 W SAME AS R2	$\begin{aligned} & 913-3810-000 \\ & 913-3279-110 \\ & 184-9086-470 \\ & 184-9086-320 \\ & 183-1190-000 \\ & 353-2906-000 \\ & 352-0613-010 \\ & 352-0661-023 \\ & 353-6468-010 \\ & 745-1359-000 \\ & 745-0731-000 \\ & 745-5659-000 \end{aligned}$

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
R15	RESISTOR, 4700 OHMS, $1 / 4 \mathrm{~W}$	745-0773-000
R16	RESISTOR, 2.2 MEGOHMS, $1 / 4 \mathrm{~W}$	745-0869-000
R17	RESISTOR, 2200 OHMS, $1 / 4 \mathrm{~W}$	745-0761-000
R18	RESISTOR, 27 OHMS, $1 / 2 \mathrm{~W}$	745-1286-000
R19	SAME AS R17	
R20	RESISTOR, 470 OHMS, $1 / 4 \mathrm{~W}$	745-0737-000
R21	SAME AS R17	
R22	SAME AS R20	
R23	SAME AS R17	
R24	SAME AS R18	
R25	SAME AS R13	
R26	SAME AS R2	
R27	SAME AS R9	
R28	RESISTOR, 3300 OHMS, $1 / 4 \mathrm{~W}$	745-0767-000
R29	RESISTOR, VAR, 1 MEGOHM	380-3767-130
R30	RESISTOR, 1 MEGOHM, 1/4 W	745-0857-000
R31	SAME AS R15	
R32	SAME AS R17	
R33	SAME AS R17	
R34	SAME AS R20	
R35	SAME AS R17	
R36	RESISTOR, 1000 OHMS, 2 W	745-5652-000
R37	SAME AS R18	
R38	SAME AS R17	
R39	SAME AS R17	
R40	RESISTOR, 1000 OHMS, $1 / 4 \mathrm{~W}$	745-0749-000
R41	RESISTOR, 220 OHMS, 1/4 W	745-0725-000
R42	RESISTOR, VAR, 500 OHMS	381-1721-030
R43	SAME AS R20	
R44	SAME AS R17	
R45	RESISTOR, 1000 OHMS, $1 / 4 \mathrm{~W}$	745-0749-000
R46	RESISTOR, 220 OHMS, 1/4 W	745-0725-000
R47	SAME AS R42	
R48	SAME AS R20	
R49	SAME AS R17	
R50	SAME AS R40	
R51	SAME AS R41	
R52 R53	SAME AS R42	
R53	SAME AS R20	
R54	SAME AS R17	
R55	SAME AS R17	
R56 R57	RESISTOR, VAR, 5000 OHMS SAME AS R9	381-1721-060
R58	SAME AS R15	
R59	SAME AS R9	
R60	SAME AS R20	
R61	SAME AS R18	
R62	SAME AS R18	

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
R63	SAME AS R15	
R64	SAME AS R15	
R65	SAME AS R20	
R66	SAME AS R15	
S7	SWITCH	266-5321-980
U1	INTEGRATED CIRCUIT, SN7402N	351-7628-010
U2	INTEGRATED CIRCUIT, SN7476N	351-7702-010
U3	INTEGRATED CIRCUIT, SN7400N	351-7629-010
U4	INTEGRATED CIRCUIT, NE555V	351-1137-020
U5	SAME AS UT	
U6	SAME AS U4	
U7	INTEGRATED CIRCUIT, SN7410N	351-7635-010
U8	INTEGRATED CIRCUIT, SN7404N	351-7630-010
U9	SAME AS U8	
VR1	ZENER DIODE, 1N4728A	353-6481-010
VR2		
THRU	SAME AS VR1	
VR6		
XU1	SOCKET, INTEGRATED CIRCUIT	220-0049-010
XU2	SOCKET, INTEGRATED CIRCUIT	220-0049-020
XU3	SAME AS XUT	
XU4	SOCKET, INTEGRATED CIRCUIT	220-0001-060
XU5	SAME AS XUT	
XU6	SAME AS XU4	
XU7	SAME AS XUT	
XU8	SAME AS XUT	
XU9	SAME AS XUT	

Figure 5-6. Overload Tally/Recycle Card (Optional).

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
	OVERLOAD TALLY/RECYCLE CARD (OPTIONAL), AIA2	632-0013-001
C1	CAPACITOR, $250 \mu \mathrm{~F}, 12 \mathrm{~V}$	183-1190-000
C2	CAPACITOR, $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$	$913-3279-110$
C3	CAPACITOR, $1.0 \mu \mathrm{~F}, 25 \mathrm{~V}$	913-3810-000
C4	CAPACITOR, $10 \mu \mathrm{~F}, 20 \mathrm{~V}$	184-9086-470
C5	SAME AS C2	
C6	SAME AS C3	
C7	SAME AS C3	
C8	SAME AS C3	
C9	SAME AS C2	
C10		
THRU	SAME AS C3	
C14		
C15	CAPACITOR, . $01 \mu \mathrm{~F}$	913-3680-000
CR1	DIODE, 1N914	353-2906-000
CR2	DIODE, LIGHT EMITTING	353-3725-030
CR3	SAME AS CR2	
CR4	SAME AS CR2	
CR5	SAME AS CR2	
CR6	SAME AS CR1	
CR7	SAME AS CRT	
CR8	SAME AS CRT	
CR9	SAME AS CRT	
L1	CHOKE, $100 \mu \mathrm{H}$	240-2715-370
Q1	TRANSISTOR, 2N2222A	352-0661-023
Q2	SAME AS Q1	
Q3	SCR, C6F	353-6468-010
Q4	SAME AS Q3	353-6468-070
Q5	SAME AS Q3	
Q6	SAME AS Q3	
R1	RESISTOR, 2.2 MEGOHMS, $1 / 4 \mathrm{~W}$	745-0869-000
R2	RESISTOR, 1000 OHMS, $1 / 4 \mathrm{~W}$	745-0749-000
R3	RESISTOR, 1 MEGOHM, $1 / 4 \mathrm{~W}$	745-0857-000
R4	RESISTOR, 4700 OHMS, $1 / 4 \mathrm{~W}$	745-0773-000
R5	RESISTOR, 470 KILOHMS, $1 / 4 \mathrm{~W}$	745-0845-000
R6	RESISTOR, 2200 OHMS, 1/4 W	745-0761-000
R7	SAME AS R6	
R8	RESISTOR, 470 OHMS, $1 / 4 \mathrm{~W}$	745-0737-000
THRU	SAME AS R8	
R15		
R16	RESISTOR, 1200 OHMS, 2 W	745-5656-000
R17	SAME AS R16	
R18	SAME AS R16	
R19	SAME AS R16	

Figure 5-7. Power Monitor Card.

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
POWER MONITOR CARD, AIA3 632-0010-001		
C1 C2 THRU Cl0 C11 C12 C13 C14 C15 THRU C18 CR1 CR2 THRU CR5 CR6 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R17 R12 RT3 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29	CAPACITOR, $1.0 \mu \mathrm{~F}, 25 \mathrm{~V}$ SAME AS Cl CAPACITOR, $1 \mu \mathrm{~F}, 35 \mathrm{~V}$ SAME AS C1 SAME AS CT CAPACITOR, $150 \mu \mathrm{~F}, 30 \mathrm{~V}$ SAME AS C1 DIODE, 1 N914 SAME AS CRT DIODE, 1N4003 RESISTOR, VAR, 20 KILOHMS RESISTOR, 10 KILOHMS, $1 / 8 \mathrm{~W}$ RESISTOR, 10.5 KILOHMS, $1 / 8 \mathrm{~W}$ RESISTOR, VAR, 20 KILOHMS SAME AS R2 SAME AS R3 RESISTOR, 68.1 KILOHMS, $1 / 8 \mathrm{~W}$ RESISTOR, 1000 OHMS, 1/4 W RESISTOR, 78.7 KILOHMS SAME AS R8 SAME AS R2 SAME AS R2 RESISTOR, VAR, 10 KILOHMS RESISTOR, 4640 OHMS, $1 / 8 \mathrm{~W}$ RESISTOR, 220 OHMS, 1/4 W RESISTOR, 1500 OHMS, 1/2 W SAME AS R16 RESISTOR, 220 OHMS, $1 / 4 \mathrm{~W}$ RESISTOR, 5110 OHMS RESISTOR, 825 KILOHMS, $1 / 8 \mathrm{~W}$ RESISTOR, 1000 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 220 OHMS, 2 W SAME AS R22 RESISTOR, 2200 OHMS, 1/4 W SAME AS R8 RESISTOR, 68 KILOHMS, $1 / 4 \mathrm{~W}$ RESISTOR, 100 OHMS, $1 / 2 \mathrm{~W}$ SAME AS R24 SAME AS R21	$\begin{aligned} & 913-3810-000 \\ & 184-9102-350 \\ & 184-8673-000 \\ & \text { 153-2906-000 } \\ & \text { 353 } \\ & \text { 353-6442-030 } \\ & 381-1721-150 \\ & 705-1454-630 \\ & 705-1470-870 \\ & 387-1721-150 \\ & 705-1454-830 \\ & 705-0749-000 \\ & 705-1087-000 \\ & 7851-1721-130 \\ & 705-1454-550 \\ & 745-0725-000 \\ & 745-1359-000 \\ & 745-0725-000 \\ & 705-6630-000 \\ & 705-9736-000 \\ & 745-1352-000 \\ & 745-5624-000 \\ & 745-0761-000 \\ & 745-0815-000 \\ & 745-1310-000 \end{aligned}$

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
R30	SAME AS R8	
R31	RESISTOR, 4700 OHMS, 1/4 W	745-0773-000
R32	SAME AS R24	
R33	RESISTOR, 10 KILOHMS, 1/4 W	745-0785-000
R34	SAME AS R21	
R35	RESISTOR, 470 OHMS, $1 / 2 \mathrm{~W}$	745-1338-000
R36	SAME AS R21	
R37	RESISTOR, VAR, 10 KILOHMS	381-1721-120
R38	SAME AS R37	
R39	RESISTOR, 4700 OHMS, $1 / 2 \mathrm{~W}$	745-1380-000
R40	RESISTOR, 5600 OHMS, 1/2 W	745-1384-000
R41	RESISTOR, 3320 OHMS, 1/2 W	705-1470-750
R42	RESISTOR, 100 OHMS, 1/4 W	745-0713-000
R43	SAME AS R42	
R44	RESISTOR, 56 KILOHMS, 1/4 W	745-0812-000
S1	SWITCH, SPDT	266-5321-980
TP1	TEST POINT	360-0434-030
TP2	TEST POINT	360-0434-040
TP3	TEST POINT	360-0434-070
TP4	TEST POINT	360-0434-050
TP5	TEST POINT	360-0434-010
Q1	TRANSISTOR, 2N2222A	352-0661-023
Q2	SAME AS Q1	
Q3	TRANSISTOR, 2N3053	352-0613-010
Q4	TRANSISTOR, 2N2222A	352-0661-023
U1	INTEGRATED CIRCUIT, UA 741	351-1029-020
U2	SAME AS U1	
U3	SAME AS U1	
U4	INTEGRATED CIRCUIT, SN7400N	
VR1	ZENER DIODE, 1N4744A	353-6481-330
VR2	SAME AS VRT	
XU4	SOCKET, INTEGRATED CIRCUIT	220-0049-010

MW100-0245-RP

Figure 5-8. Card Cage Assembly.

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
CARD CAGE ASSEMBLY, A1A5 632-0031-001		
B] C1 C2 C3 C4 C5 J1 J2 J3 J4 R1 R2 S1 T1	MOTOR CAPACITOR, $0.33 \mathrm{UF}, 600 \mathrm{~V}$ CAPACITOR, $0.1 \mathrm{UF}, 25 \mathrm{~V}$ SAME AS C2 SAME AS C2 CAPACITOR, 1000 UF, 50 V CONNECTOR SAME AS JI SAME AS 1 CONNECTOR NOT USED RESISTOR, VAR, 5 KILOHMS SWITCH TRANSFORMER	$\begin{aligned} & 230-0641-010 \\ & 951-1066-000 \\ & 913-3806-000 \\ & 183-1282-140 \\ & 372-7514-030 \\ & \\ & 372-5906-010 \\ & 372-2487-000 \\ & 266-8000-000 \\ & 270-0313-020 \end{aligned}$

Figure 5-9. Power Amplifier Cavity Assembly (Sheet 1 of 3).

MW100-0225-RP

Figure 5-9. Power Amplifier Cavity Assembly (Sheet 2 of 3).

Figure 5-9. Power Amplifier Cavity Assembly (Sheet 3 of 3).
parts list

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
POWER AMPLIFIER CAVITY ASSEMBLY, A1A6		632-0039-001
B1	MOTOR	230-0581-010
B2	SAME AS B1	
C1	CAPACITOR, 1000 pf	913-4238-010
C2	CAPACITOR, 1000 pf	913-1292-000
C3	CAPACITOR, 565 pf	914-2721-000
C4	CAPACITOR, VAR, 3.0-18.7 pf	922-0033-000
C5	SAME AS C4	
C6	CAPACITOR, 1000 pf	913-0101-000
C7	SAME AS C6	
C8	SAME AS C6	
C9	CAPACITOR, MECHANICAL PART	
C10	SAME AS C9	
C11	CAPACITOR, BLOCKER	788-8249-001
${ }_{-} 12$		
THRU	SAME AS C3	
C23		
C24	CAPACITOR, .47 uF	931-6849-000
C25	SAME AS C24	
C26	SAME AS C3	
C27	CAPACITOR, 20 pf	913-0838-000
FL1	FILTER, HARMONIC	632-0068-001
J 1 J 2	NOT USED CONNECTOR	357-9670-000
J3	SAME AS J2	357-9670-000
L1	COIL, RF	
L2	SAME AS L1	
L3	INDUCTOR, 4.7 UH	240-0178-000
L4	INDUCTOR, 3.3 UH	240-1574-000
L5	SAME AS L4	
L6	SAME AS L4	
L8	SAME AS L4 INDUCTOR	788-8218-001
L9	INDUCTOR, MECHANICAL PART	
L10	INDUCTOR, MECHANICAL PART	
P1	CONIECTOR	357-9292-000
R1	RESISTOR, 120 Ohms	747-5442-000
R2	RESISTOR, 12 Ohms	747-0726-000
R3	RESISTOR, 50 Ohms	712-0072-000
S1	SWITCH, SHORTING	627-9743-005
S2	SWITCH, SHORTING	627-9743-001
S3	SWITCH, SENSITIVE, SPDT	260-2293-000
S4	SAME AS S3	
S5	SAME AS S3	
S6	SAME AS S3	
S7	SWITCH, PRESSURE	266-8384-090
TB1	BOARD, TERMINAL	772-6593-001
TB2	BOARD, TERMINAL	772-6535-001

Figure 5-10. Control Circuits and Low Voltage Power Supplies.

SYMBOL	DESCRIPTION	COLLINS NUMBER
CONTROL CIRCUITS AND LOW VOLTAGE POWER SUPPLIES, A2 632-0021-001		
A1	CONTROL CIRCUITS AND LOW VOLTAGE POWER SUPPLIES BOARD ASSEMBLY SEE BREAKDOWN ON PAGE 5-35	632-0001-001
BT1	BATTERY	221-0080-010
BT2	SAME AS BTI	
BT3	SAME AS BTI	
BT4	SAME AS BTI	
C1	CAPACITOR, $10 \mathrm{UF}, 1 \mathrm{kV}$	930-0038-000
C2		
C3	NOT USED	
C4	NOT USED	
C5	CAPACITOR, 100 UF, 50 V	183-1281-080
C6	CAPACITOR, 3900 UF, 50 V	183-1278-370
C7		
THRU	NOT USED	
$\mathrm{Cl6}$	CAPACITOR, . $02 \mathrm{UF}, 1 \mathrm{kV}$	
C17 CR1	CAPACITOR, $.02 \mathrm{UF}, 1 \mathrm{kV}$ RECTIFIER	$962-0915-000$
CR2	NOT USED	
CR3	DIODE, 1N4006	353-6442-060
CR4	DIODE, 1N1202	353-1889-000
CR5	DIODE, 1N1202	353-1889-000
CR6	DIODE, 1N1202	353-1889-000
CR7	DIODE, TN1202	353-1839-000
CR8	DIODE, IN1202	353-1889-000
CR9		
THRU	NOT USED	
CR13		
CR14	DIODE, 1N4003	353-6442-030
CR15	NOT USED	
CR17	DIODE	
E11	ARRESTOR	013-1332-020
K1	RELAY, FILAMENT CONTRACTOR	970-2426-070
K2	RELAY, PLATE CONTRACTOR	401-0015-C20
L1	INDUCTOR, 10 H	678-0156-010
L2	SAME AS L1	
Qi	TRANSISTOR, 2N3055	353-0583-010
Q2	TRANSISTOR, 2N3054	353-0581-010
R1	RESISTOR, VARIABLE, 1000 OHMS, 25 W	735-1013-200
R2	RESISTOR, 7500 OHMS, 55 W	747-2857-000
R3	RESISTOR, 150 OHMS, 11 W	746-6145-000
R4		
THRU	NOT USED	
R7		
R8	RESISTOR, 1200 OHMS, 14 W	$747-0766-000$
R9	RESISTOR, 1500 OHMS, 11 W	746-6161-000
R10	RHEOSTAT, 15 KILOHMS, 25 W	735-1013-510
R11	RESISTOR, 5000 OHMS, 11 W	746-6169-000

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
$\begin{aligned} & \text { R11 } \\ & \text { R12 } \end{aligned}$	RESISTOR, 5000 OHMS, 11 W	746-6169-000
THRU	NOT USED	
R17		
R18	RESISTOR, 33 OHMS, 6.5 W	747-5491-000
R19		
THRU	NOT USED	
R36		
R37	RESISTOR, 150 OHMS, 11 W	745-6145-000
R38	RESISTOR, 15 KILOHIIS, 2 W	745-5701-000
S1	SWITCH, FRONT IMTERLOCK	627-9743-007
S2	SWITCH, REAR INTERLOCK	627-9743-006
T1	TRANSFORMER	662-0357-010
T2	TRANSFORMER	662-0358-010
TB1	TERMINAL BOARD	367-5160-000
TB2	TERMINAL BOARD	367-4200-000
TS3	TERMINAL BOARD	367-4100-000
T84	TERMINAL BOARD	306-0778-000
TB5	TERIIIIAL BOARD	367-4160-000
TB6	SAME AS TB5	
U1	REGULATOR	351-1120-080
VR1	DIODE, ZENER, 1N2933	353-1367-000
VR2	NOT USED	
VR3	NOT USED	
VR4	DIODE, ZENER, 1N3997A	
XBT1	HOLDER, BATTERY	139-2699-030
XBT2	SAME AS XBTI	
XBT3	SAME AS XBT1	
XBT4	SAME AS XBTI	
XE11	HOLDER, ARRESTOR	013-1332-010
XQ1	SOCKET, TRANSISTOR	220-0968-010
$\times 02$	SOCKET, TRANSISTOR	220-0968-020
XU1	SAME AS XQ1	

SYMBCL	DESCRIPTION	COLLINS PART NUMBER
	CONTROL CIRCUITS AND LOW VOLTAGE POWER SUPPLIES, BOARD ASSEMBLY, A2A1	632-0001-001
C1	FOT USED	
C2	NOT USED	
C3	CAPACITOR, 30 UF, 200 V	183-1282-330
C4	SAME AS C3	
C5	NOT USED	
C6	WOT USED	
C7	CAPACITOR, 100 UF, 50 V	183-1281-080
C3	CAPACITOR, $0.1 \mathrm{UF}, 500 \mathrm{~V}$	913-3234-000
C9	CAPACITOR, 0.1 UF, 25 V	913-3806-000
C10	SAME AS C9	
C11	CAPACITOR, 180 UF, 25 V	184-8664-000
C12	SAME AS CII	
C13	SAME AS C9	
C14	SAME AS C8	
C15	SAIME AS CO	
C16	SAME AS C9	
CR1	NOT USED	
CR2	DIODE, 1N4006	353-6442-060
CR3		
TRRU CRO	NOT USED	
CR9	DIDDE, 1N4003	353-6442-030
CR10		
THRU	SAME AS CR9	
CR13		
CR14	NOT USED	
CR15	SAME AS CR9	
CR16	SAME AS CR9	
CR17	NOT USED	
CR13	SAME AS CR9	
CR19	DIODE, IN4006 NOT USED	353-6442-060
L2	NOT USED	
L3	REACTOR, 16 H	668-0163-010
C1	NOT USED	
Q2	NOT USED	
Q3	TRAINSISTOR, 2:4037	352-0714-020
Q4	TRANSISTOR, 2N3053	352-0613-010
Q5	TRIAC, SC-450	353-6490-030
Q6	SAME AS Q4 SAME AS 04	
Q8	SAME AS Q5	
R1	NOT USED	
R2	NOT USED	
R3	NOT USED	
R4	RESISTOR, 750 KILOHMS, 2 W	705-1493-020
R5	RESISTOR, 10 KILOHMS, $1 / 2 \mathrm{~W}$	745-1394-000

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
R6 R7 THRU 11 R12 R13 R15 R16 R17 R18 R19 R21 R22 R23 R24 R26 R27 R28 R29 R. 31 R32 233 R34 R35 R36 R38 R39 R40 VR1 VR3	RESISTOR, 8870 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 47 OHMS, 2 W NOT USED RESISTOR, 287 KILOHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 33 KILOHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 5110 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 470 OHMS, 1 W RESISTOR, 0.1 OHM, 3 W SAME AS R16 NOT USED RESISTOR, 2870 OH:IS, $1 / 2 \mathrm{~W}$ RESISTOR, 1330 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 180 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 1500 OHMS, 1 W RESISTOR, 100 OHMS, 1 W RESISTOR, 220 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 2200 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 10 OHMS, 1 W RESISTOR, 470 OHMS $1 / 2 \mathrm{~W}$ RESISTOR, AR, 10 KILOHMS RESISTOR, 1000 OHMS, $1 / 2 \mathrm{~W}$ SAME AS R29 SAME AS R25 SAME AS R23 SAME AS R24 SAME AS R26 SAME AS R25 RESISTOR, 390 OHMS, 6.5 W NOT USED NOT USED SAME AS R4 SAME AS R36 NOT USED DIODE, ZENER, IN4751A DIODE, ZENER, IN4734A	705-7320-000 745-5596-000 705-7214-000 745-1415-000 705-7014-000 745-3338-000 747-5115-000 705-7166-000 705-7150-000 745-1321-000 745-3359-000 745-3310-000 745-1324-000 745-1366-000 745-3268-000 745-1338-000 380-3761-070 745-1352-000 747-5452-000 $\begin{aligned} & 353-6481-470 \\ & 353-6481-130 \end{aligned}$

Figure 5-12. High Voltage Rectifier Assembly.

SYMBOL	DESCRIPTION	COLLINS PART NUMBER
METER MULTIPLIER BOARD ASSEMBLY, A3A1 632-0004-001		
CR1 CR2 R1 R2 THRU R14 R15 R16 R17 R18 VR1 VR2 VR3	DIODE, 1N4003 SAME AS CR1 RESISTOR, 200 KILOHMS, 2 W SAME AS R1 RESISTOR, 1470 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 4700 OHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 10 KILOHMS, $1 / 2 \mathrm{~W}$ RESISTOR, 470 OHMS, $1 / 2 \mathrm{~W}$ ZENER DIODE, 1N4744A SAME AS VR1 SAME AS VR1	$\begin{aligned} & 353-6442-030 \\ & 705-1493-050 \\ & 705-7151-000 \\ & 745-1380-000 \\ & 745-1394-000 \\ & 745-1338-000 \\ & 353-6481-330 \end{aligned}$

SYMBOL	DESCRIPTION	$\begin{aligned} & \text { COLLINS } \\ & \text { PART NUMBER } \end{aligned}$
COMPONENT ASSEMBLY, A3A2 632-0049-001		
C1 CR1 CR2 CR3 CR4 Q1 Q2 R1	$\begin{aligned} & \text { CAPACITOR, . } 1 \text { UF, } 500 \mathrm{~V} \\ & \text { DIODE } \\ & \text { SAME AS CR1 } \\ & \text { SAME AS CR1 } \\ & \text { SAME AS CR1 } \\ & \text { SCR, 2N1799 } \\ & \text { SAME AS Q1 } \\ & \text { RESISTOR, } 100 \text { OHMS, } 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 913-3234-000 \\ & 353-0413-020 \\ & 353-1025-010 \\ & 745-5610-000 \end{aligned}$

Figure 5-14. Remote Control Assembly (Optional).

instruction book

310Z-2 FM Exciter

Commercial Telecommunications Group
Rockwell International
Broadcast and Transmission Test Products
P.O. Box 10462

Dallas, Texas 75207
Page
Section 1 General Description 1-1

1. 1 Introduction 1-1
1.2 Physical Description 1-1
1.3 Functional Description 1-1
1.4 Optional Equipment 1-2
1.5 Technical Characteristics 1-2
1.5.1 General 1-2
1.5.2 Monaural FM 1-3
1.5.3 Stereo FM With 786V-1 1-4
1.5.4 SCA FM With $786 \mathrm{~W}-1$ 1-4
1.5.5 Composite Stereo STL With $785 \mathrm{E}-1$ 1-5
Section 2 Installation 2-1
2.1 General 2-1
2.2 Preinstallation. 2-1
2.3 Wiring 2-1
2.3.1 Audio Input Connections 2-1
2.3.2 Stereo Remote Control 2-3
2.3.3 RF Output 2-3
2.3.4 Input Power 2-3
2.3.5 Power Control Override 2-3
2.4 Initial Checks 2-3
2.5 Output Frequency Change 2-3
Section 3 Operation 3-1
3.1 General 3-1
3.2 Normal Turn-On Procedure 3-1
3.3 Alternate Turn-On Procedure 3-1
3.4 Stereo/Monaural Remote Switching 3-1
Section 4 Theory of Operation 4-1
4.1 General 4-1
4.2 Block Diagram Discussion 4-1
4.3 Stereo Generator A2 4-2
4.3.1 Signals Required 4-2
4.3.2 Method of Signal Generation in 786V-1 Stereo Generator 4-2
4.3.3 Analysis of Signals Generated 4-6
4.3.4 Circuit Analysis. 4-8

Page

4.4 SCA Generator A1/A2 4-9
4.4.1 General 4-9
4.4.2 Circuit Analysis 4-9
4.5 FM Modulator A4 4-10
4. 6 Audio/Regulator Card A7 4-12
$4.7 \quad 785 \mathrm{E}-1$ STL Interface Card A3 4-12
4.8 RF Amplifier A5 4-13
4.9 Power Supplies 4-13
4.10 Meter Amplifier 4-14
Section 5 Maintenance 5-1
5.1 General 5-1
5.2 Cleaning 5-1
5.3 Lubrication 5-2
5.4 Inspection 5-2
5.5 Test Equipment Required 5-2
5. 6 Alignment and Adjustment 5-3
5.6.1 Power Supply Checks and Adjustments 5-3
5.6.2 Modulator Tests 5-3
5.6.3 Audio Adjustments - Preemphasis Tracking and Linear Crosstalk 5-7
5.6.4 SCA Generator Output Level Adjustment 5-8
5.6.5 SCA Generator Frequency Adjustment 5-8
5.6.6 Stereo Generator Adjustment 5-8
5.7 Minimum Performance Standards 5-9
5.7.1 Output Frequency 5-9
5.7.2 Output Power 5-9
5.7.3 FM Noise 5-9
5.7.4 Frequency Response (Monaural) 5-10
5.7.5 Harmonic Distortion (Monaural) 5-11
5.7.6 Frequency Response (Stereo) 5-11
5.7.7 Harmonic Distortion (Stereo) 5-11
5.7.8 Subcarrier Suppression 5-12
5.7.9 Channel Separation 5-12
5.7.10 Main Channel to Subchannel Nonlinear Crosstalk 5-13
5.7.11 Subchannel to Main Channel Nonlinear Crosstalk 5-14
5.7.12 SCA Input Test 5-14
5.7.13 SCA Noise Test 5-16
5.7.14 SCA Mute Circuit Test 5-16
5.7.15 SCA Frequency Response 5-17
5.8 Frequency Change 5-17
Page
Section 6 Parts List 6-1
6.1 General 6-1
6.2 Ordering Replacement Parts 6-1
Section 7 Diagrams 7-1
Figure Page
1-1 310Z-2 FM Broadcast Exciter 1-0
2-1 310Z-2 FM Exciter, Outline Dimensions and Installation Details 2-2
3-1 310Z-2 FM Exciter, Front Panel Controls and Indicators 3-2
4-1 310Z-2 FM Exciter, Simplified Block Diagram 4-3
4-2 Spectrum of Signals in Stereo Baseband Audio 4-5
4-3 Elementary Time-Division Multiplex System 4-5
4-4 Balanced Modulator Output When $L+R=2$; $L-R=0$ 4-7
4-5 Balanced Modulator Output When $L+R=1$; $\mathrm{L}-\mathrm{R}=1$. 4-7
4-6 Balanced Modulator Output When $L+R=0$; $\mathrm{L}-\mathrm{R}=2$ 4-8
5-1 310Z-2 FM Exciter, Maintenance Controls 5-4
5-2 Test Equipment Connections to 310Z-2 for Adjustment and Test Procedures 5-6
5-3 Stereo Test Circuit, Schematic Diagram 5-7
5-4 Test Equipment Connections to 310Z-2 forCrosstalk Test5-14
5-5 Nonlinear Crosstalk Test Circuit, Schematic Diagram 5-15
6-1 310Z-2 FM Exciter. (Sheet 1 of 3) 6-2

Figure
Page
6-2 310Z-2 FM Exciter (Sheet 2 of 3) 6-3
6-3 310Z-2 FM Exciter (Sheet 3 of 3) 6-4
6-4 Extender Board ... 6-7
6-5 SCA Generator 786W-1 A1, A2 6-9
6-6 STL Interface 785E-1 A3 6-13
6-7 Stereo Generator 786V-1 A3 6-15
6-8 Modulator/Exciter A4 (Sheet 1 of 2) 6-18
6-9 Modulator/Exciter A4 (Sheet 2 of 2).................... 6-19
6-10 Power Amplifier A5..................................... 6-23
6-11 Audio/Mtr Regulator A6 6-25
7-1 310Z-2 FM Exciter, Detail Block Diagram 7-3
7-2 $\begin{array}{ll}\text { 310Z-2 FM Exciter Main Frame, Schematic } \\ & \text { Diagram .. }\end{array}$

7-5 FM Modulator A4, Schematic Diagram 7-13
7-6 RF Amplifier A5, Schematic Diagram 7-15
7-7 785E-1 STL Interface Card A3, Schematic
Diagram ... 7 . 16
list of tables

Table
Page
$\begin{array}{ll}\text { 1-1 } & \text { 310Z-2 FM Exciter Special Features and } \\ \text { Customer Options .. }\end{array}$
3-1 310Z-2 FM Broadcast Exciter, Front Panel Controls and Indicators

3-3
3-2 Test Meter Indications 3-3
5-1 Required Test Equipment 5-2
5-2 Maintenance Controls 5-5
5-3 Tests... 5-10
5-4 Crystal Part Number 5-18

Figure 1-1. 310Z-2 FM Broadcast Exciter.

General Description

1.1 INTRODUCTION

The solid-state $310 \mathrm{Z}-2$ FM broadcast exciter (figure 1-1) provides a frequency-modulated signal in the $88-$ to $108-\mathrm{MHz}$ range (exact frequency as specified by the customer) for further amplification and transmission. The exciter can be adjusted manually to provide maximum output of 20 watts and is prewired to accept three optional plug-in modules. The optional 786W-1 SCA Generators enable background music to be transmitted at either 41 kHz or 67 kHz multiplexed on an FM broadcast. The optional $786 \mathrm{~V}-1$ Stereo Generator allows broadcasting compatible time-division multiplex stereo. In addition, the optional $785 \mathrm{E}-1$ STL (studio transmitter link) Interface Card can be substituted for the $786 \mathrm{~V}-1$ Stereo Generator to interface the 310Z-2 with common composite STL systems or other systems requiring an external baseband input to the modulator.

1.2 PHYSICAL DESCRIPTION

The 310Z-2 exciter is 483 mm (19 in .) wide, 267 mm (10.5 in .) high, and 381 mm (15 in .) deep, weighs approximately $18 \mathrm{~kg}(40 \mathrm{lb})$ and is designed for mounting a standard $483-\mathrm{mm}$ (19-in.) equipment rack. Controls and power supply components are mounted on the chassis. A card cage secured to the chassis provides receptacles for the five plug-in circuit cards that contain most of the circuits. A removable front panel provides access to the cards. Connectors for the rf signal output and for the ac power input as well as the terminal strip for audio inputs are located on the back of the exciter. Built-in shielding prevents radiation and interference.

1.3 FUNCTIONAL DESCRIPTION

The functional units of the 310Z-2 FM Exciter are an FM modulator and an rf amplifier. In addition, a stereo generator and one or two sca (subsidiary communication authorization) generators are optional units that may be included as part of the 310Z-2. Each of these major functional units is constructed as a plug-in module, and the $310 \mathrm{Z}-2$ is prewired so that the stereo generator and the sca generator plug-in modules can be added at any time.
When the $310 \mathrm{Z}-2$ is used only for monaural broadcasts (without the optional sca generators or stereo generator), the audio input is applied to the baseband input of the FM modulator through the required audio processing circuits. A carrier frequency oscillator is modulated to full deviation by the input. This FM signal is also applied to the AFC system, which maintains the oscillator output frequency at carrier frequency.

When the stereo generator is used, the exciter functions the same as described above with the exception that left and right audio inputs are applied to the stereo generator through separate preemphasis networks. These audio signals are multiplexed to provide the baseband signal, which is filtered and applied to the FM modulator. When an sca generator is used, the sca audio input is amplified and used to frequency-modulate a $41-$ or $67-\mathrm{kHz}$ subcarrier oscillator. The FM sca output is filtered and applied to the FM modulator.

1.4 OPTIONAL EQUIPMENT

The 786V-1 Stereo Generator, $785 \mathrm{E}-1$ STL Interface Card, and $786 \mathrm{~W}-1$ SCA Generators are customer options. Table 1-1 lists several 310Z-2 FM exciter features and indicates optional modules or cards required for each feature.

1.5 TECHNICAL CHARACTERISTICS

The technical characteristics for the 310Z-2 are listed below, and have been divided into five groups: (1) generator characteristics that apply to all 310Z-2 exciters, (2) those characteristics that apply to the $310 \mathrm{Z}-2$ when it is used for monaural FM, (3) those characteristics that apply to the 310Z-2 when it is used for stereo FM with the 786V-1 Stereo Generator, (4) those characteristics that apply to the $310 \mathrm{Z}-2$ when it is used for sca transmission with the $786 \mathrm{~W}-1$ SCA Generator, and (5) those characteristics that apply to the 310Z-2 when it is used for composite stereo STL transmission with the $785 \mathrm{E}-1$ STL Interface Card.

1.5.1 General

Ambient Temperature Range:

Ambient Humidity
Range:
Maximum Altitude: $\quad 2300 \mathrm{~m}(7500 \mathrm{ft})$

Input Power Requirement:
RF Power Output:
Output Impedance:
Output Frequency Range:

Carrier Frequency Stability:

Harmonic and Spurious Radiation:

Up to 95%
0° to $55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$117 / 234$ volts ac, $\pm 10 \%$, single-phase, $50 / 60 \mathrm{~Hz}$
0 to 20 watts
50 to 70 ohms, unbalanced
88 to 108 MHz , crystal-controlled (crystal installed and exciter adjusted at factory to meet customer requirement)

Within $\pm 500 \mathrm{~Hz}$ with ac line voltage of $\pm 10 \%$ and temperature range of 0° to $+55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$

Any emission appearing on a frequency removed from the carrier by between 120 and 240 kHz is attenuated at least 30 dB below the level of the unmodulated carrier.

Any emission appearing on a frequency removed from the carrier by more than 240 kHz up to and including 600 kHz is attenuated at least 35 dB below the level of the unmodulated carrier.

Any emission appearing on a frequency removed from the carrier by more than 600 kHz is attenuated at least 80 dB below the level of the unmodulated carrier, with the exception of harmonics of the rf carrier.

Table 1-1. 310Z-2 FM Exciter Special Features and Customer Options.

FEATURE	OPTIONAL MODULES OR CARDS REQUIRED		
	786V-1 STEREO GENERATOR	785E-1 STL INTERFACE CARD	$786 \mathrm{~W}-1$ SCA GENERATOR(S)
Monaural broadcasting (no options required)			
Monaural broadcasting with sca			X
Stereo broadcasting	X		X
Stereo broadcasting with sca	X	X	X
Composite STL		X	
Composite STL with sca			

1.5.3 Stereo FM With 786V-1

Audio Input Impedance: $\quad 600$ ohms balanced
Audio Input Levels: $\quad+10 \pm 2 \mathrm{~dB} \mathrm{~mW}$ for 100% modulation
Frequency Response: Standard 75-microsecond preemphasis for both right and left channels; others optional

Distortion:
Not more than 0.5% thd for $50-\mathrm{Hz}$ to $15-\mathrm{kHz}$ audio modulation,

Not more than 0.5\% imd
Stereophonic Subcarrier and Pilot Carrier Phasing:

Stereo Channel
Phase difference between the stereophonic subcarrier and pilot carrier is within the limits required for channel separation of more than 35 dB with audio-modulating frequencies of 50 Hz to 15 kHz .

At least $35 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 15 kHz

At least 45 dB below either single-channel level 45 dB below 90% modulation of the main carrier Suppression:

Pilot Carrier Frequency:
Pilot Carrier Level:
$19 \mathrm{kHz} \pm 2 \mathrm{~Hz}$
Adjustable from 0% to 12% modulation of main carrier

1.5.4 SCA FM With $786 \mathrm{~W}-1$

Audio Input Impedance:
600 ohms, balanced
Audio Input Level:
-10 to +15 dB mW , adjustable from 0% to 10% modulation

SCA Subcarrier Center
67 kHz or 41 kHz
Frequency:
SCA Frequency Modulation
of Main Carrier:
SCA Generator Center
Within $\pm 0.5 \%$
Frequency Stability:
Frequency Response:
Standard 75-microsecond preemphasis

FM Noise Level:	Less than -55 dB
Distortion:	1.0% for 50 Hz to 5 kHz with $3.5-\mathrm{kHz}$ deviation
Crosstalk:	2.0% for 50 Hz to 5 kHz with $7.5-\mathrm{kHz}$ deviation
	Crosstalk from main channel and stereo sub- channel into the sca channel shall be 50 dB below 10% modulation of the main channel. Reference: $4.0-\mathrm{kHz}$ sca deviation.

1.5.5 Composite Stereo STL With 785E-1

External Baseband Input: $\quad 3.5 \mathrm{~V}$ p-p into 4700 ohms when used with $785 \mathrm{E}-1$ STL Interface Card

External Telemetry Input: $\quad 1 \mathrm{~V}$ rms 20 to 30 Hz , when used with $786 \mathrm{~W}-1$ SCA Generator

Installation

2.1 GENERAL

Remove all packing material carefully. Check equipment against shipping invoices and records. Inspect the unit for damaged or missing components. Check for free movement of front panel controls. Any claims for damage should be filed promptly with the transportation agency. If such claims are to be filed, all packing material must be retained. Store the factory shipping container for future use.

2.2 PREINSTALLATION

Make sure that all plug-in filters and cards are securely plugged in. Refer to Section 6, Parts List for locations.
NOTE

If the 786V-1 Stero Generator is not to be installed, filter FL1 is not required.

2.3 WIRING

2.3.1 Audio Input Connections

Use only balanced 600 -ohm audio inputs to the 310Z-2. Use only twisted, shielded parts for input cables. (See figure 2-1.)
a. Monaural Inputs - Connect the monaural audio input line to TB1-1 and TB1-3. Connect the cable shield to TB1-2. (See figure 2-1.)
b. Stereophonic Inputs - Connect the left channel audio input line to TB1-1 and TB1-3. (See figure 2-1.) Connect the cable shield to TB1-2. Connect the right channel audio input line to TB1-4 and TB1-6. Connect the cable shield to TB1-5. Be sure that the $786 \mathrm{~V}-1$ Stero Generator is plugged in to the $310 \mathrm{Z}-2$.
c. SCA Inputs - Connect the SCA-1 (41-kHz) audio input to TB1-7 and TB1-9. Connect the cable shield to TB1-8. Connect the SCA-2 $(67-\mathrm{kHz})$ audio input to TB1-10 and TB1-12. Connect the cable shield to TB1-11. Be sure that the 786W-1 SCA Generator is plugged into the $310 \mathrm{Z}-2$. Set the $786 \mathrm{~W}-1$ METER switch to 3.5 kHz or 7.5 kHz , depending on the deviation to be used. Set the $786 \mathrm{~W}-1$ MUTE ENABLE switch to ON.
d. Composite STL Input - Connect the output of the STL receiver to B / B IN jack J2 on the rear of the exciter. This connection should be made with RG-58A/U or RG-223 coaxial cable. Check to see that the $785 \mathrm{E}-1$ STL card is installed in the A3 card position and that filter FL1 is removed from its socket.

Figure 2-1. 310Z-2 FM Exciter, Outline Dimensions and Installation Details.
e. \backslash Radio Remote Control Telemetry Input - Connect the telemetry output of the remote control unit to TELE IN jack J3 on the rear of the exciter. This connection should be made with RG-58A/U or RG-223 coaxial cable. Check to see that a $67-\mathrm{kHz} 786 \mathrm{~V}-1$ SCA Generator is installed in the A2 card position.

2.3.2 Stereo Remote Control

If stereo remote control is desired, connect the leads from the station remote control system to TB1-13 and TB1-14 (ground). A normally closed contact must be provided for stereo operation.

2.3.3 RF Output

Connect a coaxial cable from the transmitter rf input to the exciter RF OUT jack, JI.

2.3.4 Input Power

Connect the ac line cord between Pl on the exciter and 117 volts ac.

> CAUTION

Do not operate the 310Z-2 exciter without a load connected to the rf output, and do not operate the exciter over any extended period of time into a vswr greater than $2: 1$. To guard against such operation, steps should be taken during installation, as outlined in paragraph 2.3.5.

2.3.5 Power Control Override

A dc voltage source (+12 volts) should be connected to TB1-16 to protect the exciter output transistors when no plate voltage is present in the transmitter. This de voltage is applied to the power regulator card to reduce the exciter output power to a safe level.

If the override voltage is not available directly from the transmitter with which the exciter is being used, the voltage provided at TB1-15 of the exciter may be connected through a relay so that it is applied whenever plate voltage is removed from the power amplifier stage in the transmitter.

2.4 INITIAL CHECKS

The 310Z-2 exciter is carefully adjusted and inspected at the factory and no special tests or adjustments are required upon installation. However, once the exciter has been installed, the transmitter should be checked to ensure that it is operating properly.

2.5 OUTPUT FREQUENCY CHANGE

The output frequency of the $310 \mathrm{Z}-2$ is crystal controlled and can be changed to any desired frequency between 88 and 108 MHz . To change the exciter frequency, refer to paragraph 5.8.

3.1 GENERAL

Only the three front panel switches and the meter on the front panel of the exciter are used during normal operation. Refer to figure 3-1 for control and indicator locations and to table 3-1 for control and indicator descriptions. After the exciter has been placed in operation, it is necessary only to check meter indications (table 3-2) from time to time to ensure that the exciter is operating properly.

3.2 NORMAL TURN-ON PROCEDURE

a. Place POWER switch to ON.
b. Set MODE switch to LEFT, RIGHT, or STEREO, depending on the type of modulation desired.

3.3 ALTERNATE TURN-ON PROCEDURE

When the 310Z-2 is used in a Collins transmitter that has automatic-sequencing circuits, the POWER switch is normally left in the ON position and the exciter is turned on and off by the power-sequencing circuits of the transmitter.

3.4 STEREO/MONAURAL REMOTE SWITCHING

When it is desired to switch the exciter from monaural to stereo from a remote location, a stereo on/off switch is connected between pins 13 and 14 of terminal board TB1. This switch will then control relay K1 so that remote switching can be used as long as the MODE switch is in either the LEFT or RIGHT position. The STEREO position overrides the remote stereo OFF position. The selected LEFT or RIGHT line will then serve as a feed for monaural operation.

Figure 3-1. 310Z-2 FM Exciter, Front Panel Controls and Indicators.

Table 3-1. 310Z-2 FM Broadcast Exciter, Front Panel Controls and Indicators.

REF DES	CONTROL OR INDICATOR	FUNC TION
S1	POWER	Controls the application of primary power to the exciter. Selects either the left audio input to be broadcast monaurally (LEFT), or the right audio input to be broadcast monau- rally (RIGHT), or the left and right audio inputs to be broadcast stereophonically (STEREO). S3, M1 R1
METER Meter M1, in conjunction with function Switch S3, permits monitoring of the various audio inputs and dc parameters from the 310Z-2 exciter. Refer to table 3-2.		
Adjusts power output of exciter.		

Table 3-2. Test Meter Indications

POSITION OF METER SWITCH S3	FUNCTION	METER INDICATION
LEFT	Left channel modulation	Remi-peak reading meter responds to peak audio level in manner similar to modulation monitor.
B/B	Right channel modulation Baseband output of stereo generator Same	S1-kHz sca modulation
SCA-1	Calibration at 100\% determined by setting of S2 on 786W-1 in A1 card position.	
MOD OUT	Modulator rf output	Same as SCA-1 except card A2 Relative rf output of modulator. Reads 50% to 100\% as noted on individual data sheet.

Table 3-2. Test Meter Indications (Cont).
\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { POSITION OF } \\
\text { METER SWITCH S3 }\end{array} & \text { FUNC TION } & \text { ME TER INDICATION } \\
\hline \text { PA OUT } & \begin{array}{l}\text { Power amplifier rf } \\
\text { output } \\
\text { PAV PS }\end{array} & \begin{array}{l}\text { Output of fixed power } \\
\text { Supplies of main frame }\end{array} \\
\begin{array}{l}\text { Power amplifier } \\
\text { Pollector voltage }\end{array} & \begin{array}{l}\text { Relative rf output of power ampli- } \\
\text { fier. Calibration controlled by R2 } \\
\text { on 310Z-2 main frame. Set for 100\% } \\
\text { under normal power output and load } \\
\text { conditions. }\end{array} \\
\begin{array}{l}\text { Reads combined output of fixed 24- } \\
\text { volt power supplies. Normally } \\
\text { reads 85\% to 115\%. Reads 40\% to } \\
60 \% \text { when either supply inoperative. }\end{array} \\
\begin{array}{l}\text { Reads relative collector voltage }\end{array}
$$

to driver and power amplifier

transis tors. Consult data sheet

for normal readings.\end{array}\right\}\)| Reads relative collector current |
| :--- |
| to driver and power amplifier |
| transistors. Consult data sheet |
| for normal readings. |

4.1 GENERAL

The 310Z-2 exciter produces a frequency-modulated output for driving a power amplifier in an FM broadcast transmitter. The 310Z-2 employs the direct method of frequency modulation. The optional $786 \mathrm{~V}-1$ Stereo Generator produces signals that meet all FCC requirements for stereophonic broadcasting. The optional 786W-1 SCA Generator produces an FM subcarrier for broadcasting background music under an FCC Subsidiary Communications Authorization.

4.2 BLOCK DIAGRAM DISCUSSION

Refer to figure 4-1 (simplified block diagram), figure 7-1 (detail block diagram), and figure 7-2 (main frame schematic) during the following discussion. The major circuits of the 310Z-2 are contained on plug-in modules; and as shown on figure 4-1, these modules are the major blocks of the $310 \mathrm{Z}-2$ exciter. When an exciter is used for monaural broadcasting without the optional modules, the monaural input is normally applied to the audioprocessing circuits and then directly to the modulator module as the baseband signal. Since the remaining circuits operate the same for either monaural or stereophonic and sca broadcasting, the block diagram discussion covers a complete exciter with the optional modules.

The left and right audio input signals are applied through the audio frequency circuits as the modulation input to the balanced modulator of the stereo generator. These signals modulate two $38-\mathrm{kHz}$ subcarrier signals that are 180° out of phase. As a result, the $38-\mathrm{kHz}$ carrier is canceled so that the modulator output consists of only the two modulation frequencies and the desired modulation sidebands of the carrier frequency. One component is directly proportional to the sum of the two audio signals ($L+R$), and the other component is a double-sideband signal ($L-R$). The output from the balanced modulator is combined with the $19-\mathrm{kHz}$ pilot carrier. Signal generation within the stereo generator is described in paragraph 4.3.

The output from the stereo generator is passed through a $53-\mathrm{kHz}$ low-pass filter and then combined with the output from the sca generator (if used) to produce the baseband signal. The $19-\mathrm{kHz}$ pilot carrier is derived in the stereo generator by routing one of the $38-\mathrm{kHz}$ subcarrier signals to a divide-by-2 circuit to produce the $19-\mathrm{kHz}$ pilot carrier, which is phase-locked to the $38-\mathrm{kHz}$ signals. The baseband signal is then applied to the modulator.

The sca audio inputs are applied to an audio transformer in the sca generators, routed through a preemphasis network, amplified, and used to frequency-modulate the carrier frequency of the subcarrier. The audio input is also monitored by a carrier mute circuit, which removes the sca output whenever the audio input drops below the selected mute level.

4.3 STEREO GENERATOR A2

The 786V-1 Stereo Generator performs the conversion of stereophonic input signals to an output that conforms to the standards approved by the FCC for transmission of stereophonic signals. To provide a realistic stereo effect, the $786 \mathrm{~V}-1$ maintains the difference in time delay and signal amplitude from the sound source to both the right and left channel microphones through the entire stereo system. Channel separation, which is the isolation between the two channels, is held to greater than 35 dB by the $786 \mathrm{~V}-1$ to enhance the stereo effect to the listener. The following paragraphs discuss stereophonic signal generation and the principles of operation of the 786V-1 Stereo Generator. Refer to figure 7-4 for a schematic diagram of the $786 \mathrm{~V}-1$ Stereo Generator.

4.3.1 Signals Required

The FCC requires that stereophonic FM broadcast signals be compatible, which means that the signals may be detected by either a monophonic or stereophonic receiver. To satisfy this and other requirements of the FCC, the signals and frequencies generated must be as shown in figure 4-2. In monophonic receivers only, the $L+R$ (left plus right) audio frequency component of the signal, called the main channel, is used. The $L-R$ (left minus right) component of the baseband signal, called the subchannel, is a difference signal only and is composed of sidebands of a $38-\mathrm{kHz}$ suppressed subcarrier. This difference component and the $19-\mathrm{kHz}$ pilot carrier signal are reduced by the deemphasis network of the monophonic receiver.

In FM stereophonic receivers, all signals shown in figure 4-2 are detected and used. The $L-R$ subchannel and $L+R$ main channel signals are mixed, added, and subtracted to separate them into left and right audio signals. The $19-\mathrm{kHz}$ pilot carrier signal is doubled in the receiver to regenerate the $38-\mathrm{kHz}$ suppressed subcarrier, which is used to demodulate the stereo signal. By this means, proper phase relationship is maintained between main channel and subchannel frequencies and between the left and right audio channels.

After the $L+R$ and $L-R$ signals have been generated, any interaction or exchange of information between the main channel ($L+R$) and the subchannel ($L-R$) represents crosstalk, which deteriorates the signals and has the effect of adding noise. In stereo transmitting systems, crosstalk must be kept at least 40 dB below either signal-channel level.

To maintain $30-\mathrm{dB}$ channel separation, as required by the FCC , for the condition of an input into one channel only, the main channel and stereo subchannel signals must have equal peak amplitude, within approximately 0.3 dB , and the envelope of the subchannel signal must cross the zero level simultaneously with the main channel signal, within approximately $\pm 3^{\circ}$ 。

4.3.2 Method of Signal Generation in 786V-1 Stereo Generator

The $786 \mathrm{~V}-1$ generates the spectrum of signals shown in figure $4-2$ by the time-division multiplex method. The basic system operating principle is shown in figure 4-3. The left and right audio channels are switched into the link (used alternately) at a $38-\mathrm{kHz}$ rate. If the receiver switching rate is synchronized with the transmitter switching rate, the original left and right audio signals are detected. In the receiver the frequency of the $19-\mathrm{kHz}$ pilot carrier is doubled to synchronize the receiver to the transmitter. It is important that the switching frequency in both the stereo generator and the receiver be of the same phase to retain the identity of the left and right audio signals. In the $786 \mathrm{~V}-1$ generator

Figure 4-2. Spectrum of Signals in Stereo Baseband Audio.

Figure 4-3. Elementary Time-Division Multiplex System.
a crystal-controlled oscillator is used to generate a $76-\mathrm{kHz}$ signal. This $76-\mathrm{kHz}$ signal is divided by 2 in a micrologic flip-flop circuit; and by using both the logic 1 and the logic 0 outputs of the flip-flop, two $38-\mathrm{kHz}$ square waves are obtained that will be exactly 180° out of phase. One of the $38-\mathrm{kHz}$ square-wave signals is used to trigger another micrologic flip-flop (A4) to obtain a phase-locked $19-\mathrm{kHz}$ pilot carrier signal.

To generate the baseband stereo signals, the $786 \mathrm{~V}-1$ Stereo Generator utilizes the basic circuits and functions of a balanced modulator. Refer to figure 4-1, the exciter block diagram, for component relationship and signal flow; refer to figure 7-4, the stereo generator schematic, for circuit detail. Although transistors Q2 and Q5 and their associated circuits function as a balanced modulator, several additional considerations affect the overall operation of the circuits to produce the desired stereo output signal. Separate input channels couple the two different modulating audio signals, L and R (left and right), to the modulator. Emitter follower Q1 applies the right audio signal to the balanced modulator, and emitter follower Q4 couples the left audio signal to the balanced modulator. The $38-\mathrm{kHz}$ subcarrier signals are applied to the balanced modulator transistor switches, Q3 and Q6. Because the two $38-\mathrm{kHz}$ signals are of opposite phase, modulator transistors Q2 and Q5 are switched on and off at 38 kHz . Furthermore, when the ouputs from Q2 and Q5 are combined, the subcarrier signals cancel and the $38-\mathrm{kHz}$ subcarrier does not appear in the
output signal. Transistor Q2 conducts during one half-cycle of the subcarrier frequency, and during this half-cycle one excursion of the square wave is modulated by the audio signal in the right channel. During the next half-cycle of the subcarrier, Q5 conducts and the next excursion of the square wave is modulated by the audio signal in the left channel. As stated previously, the $38-\mathrm{kHz}$ subcarrier signals are balanced out in the modulator, and only the two modulating audio frequencies and the desired modulation sidebands of the carrier frequency are combined in the output.

4.3.3 Analysis of Signals Generated

If can be demonstrated by mathematical analysis that if a square wave is modulated alternately by two audio signals, two significant components are in the resultant signal. One component is directly proportional to the sum of the two audio signals ($L+R$), and the other component is a double-sideband (DSB) signal centered on the switching frequency or subcarrier frequency (38 kHz). Mathematical analysis in detail is hardly within the scope of this manual. One other fact derived from such analysis is necessary, however, to an understanding of the $786 \mathrm{~V}-1$ operation. Because the peak amplitude of the fundamental sinewave components of a square wave is $4 / \pi$ times the peak amplitude of the square wave itself, the $L-R$ component mentioned above is $4 / \pi$ times the $L+R$ component.

To make $L+R=L-R$, as required by the FCC, small portions of the L and R signals are added directly in the $786 \mathrm{~V}-1$, shunted around the balanced modulator through R9, R25, R16, and C13, and added to the modulator output.

Development of the FCC required signal in the $786 \mathrm{~V}-1$ may also be demonstrated by an analysis of the waveforms generated. Figure 4-4 represents the circuit operation when the inputs to each of the audio channels (L and R) are identical sine waves. On one half-cycle of the square-wave switching frequency (subcarrier frequency), Q5 conducts and the L signal is utilized (or sampled). On the next half-cycle, Q2 conducts and the R signal is utilized. Expressing the same action in a different way, on one half-cycle of the switching frequency an excursion of the subcarrier square wave is modulated by the left channel audio signal; and on the next half-cycle the next excursion of the subcarrier square wave is modulated by the right channel audio signal. As may be seen in figure $4-4$, the $38-\mathrm{kHz}$ subcarrier switching frequency is balanced out, and with equal sinewave input to both audio channels ($L-R=$ sine wave) no sidebands are generated. The spikes shown on the composite sine wave in the third illustration of figure 4-4 are caused by imperfect switching and must be filtered out. The output of the modulator is then a sine wave identical to the original sine-wave input in either channel ($L-R$ or $[L+R] / 2$). Equal sine-wave input seldom occurs in an actual broadcast but is shown here for analysis.

Figure 4-5 shows the balanced modulator output when $L=1$ and $R=0$. The output of the balanced modulator is an audio component plus DSB components centered on the switching frequency, and odd harmonics. When the odd harmonics are filtered out by a phase-linear low-pass filter, the third waveform results. The audio component is then increased by $4 / \pi$ and the fourth illustration results.

Figure 4-6 shows the time-division multiplex signal when $L=-R$, or $L+R=0$, and $L-R=$ 2 L (or 2 R). The composite waveform from the balanced modulator is shown in the third illustration. This waveform is composed of equal but opposite audio components, DSB components centered on the switching frequency, and odd harmonics. The audio components balance out; and when the odd harmonics are removed by filtering, the waveform in the fourth illustration results. This waveform is a $D S B$ signal, which equals $L-R$ as required.

Figure 4-4. Balanced Modulator Output When $\mathrm{L}+\mathrm{R}=2$; $\mathrm{L}-\mathrm{R}=0$.

Figure 4-5. Balanced Modulator Output When $L+R=1 ; L-R=1$.

Figure 4-6. Balanced Modulator Output When $L+R=0 ; L-R=2$.

Perhaps the relationship of the $L+R$ and $L-R$ signals should be noted again here in connection with the above analysis. The $L+R$ main channel component of the composite signal represents the sound that would be heard if only one microphone is used for input, and it is also the sound that would be heard from a microphonic receiver tuned to a stereo broadcast. The $L-R$ component is a difference signal only. It may be a positive value, may be equal to zero, or may be a negative value (in the case where R is greater than L). When the composite signal is detected in a stereo receiver that is exactly synchronized with the transmitter, the $L+R$ component is split and routed to both left and right audio channels in the receiver. The $L-R$ difference signal is split also, and in effect is added to the left channel audio component and subtracted from the right. The result is $(L+R) / 2+(L-R) / 2=$ L in the left channel, and $(\mathrm{L}+\mathrm{R}) / 2-(\mathrm{L}-\mathrm{R}) / 2=\mathrm{R}$, in the right channel. In this way the receiver gives a perfect reproduction of the stereo input to the transmitter.

4.3.4 Circuit Analysis

Both left and right audio signals are fed through preemphasis networks in the exciter before application to the right and left audio inputs of the stereo generator, connector pins 13 and 29 , (figure $7-4$). Within the generator the left and right audio channels are identical. The audio signals are fed through $15-\mathrm{kHz}$ low-pass filters (FL1 and FL2), which sharply attenuate frequencies above 15 kHz . From FL1, capacitor C1 couples the right audio signal to the base of emitter follower Q1 and then to the modulator at the junction of resistors R9 and R10. The right channel audio signal is divided so that the signal through R9 adds to the left channel signal and the signal through R10 modulates the $38-\mathrm{kHz}$ subcarrier. A similar circuit couples the left audio signal to emitter follower Q6 and to the other side of the balanced modulator at the junction of resistors R25 and R26. The signal through R25 adds to the right channel signal (through R9) and is routed around the modulator to increase the $L+R$ component of the modulator output. Variable resistor R16 provides a control for the amplitude of the $L+R$ component to control channel separation.

The $38-\mathrm{kHz}$ subcarrier signals for the balanced modulator are produced from the output of the $76-\mathrm{kHz}$ oscillator, transistor Q7 and its associated circuits. The oscillator frequency is controlled by crystal Y1, and after amplification by amplifier Q8 the $76-\mathrm{kHz}$ signal triggers a flip-flop (micrologic A1). By using both the logic 1 and the logic 0 from this flip-flop, two $38-\mathrm{kHz}$ signals are obtained that are 180° apart in phase. The output signals from flipflop A1 are first amplified by the inverters (micrologics A2 and A3) and then applied to the modulator through transistor switches Q3 and Q6. Capacitor C26 helps maintain balance between Q3 and Q6 and improves the switching operation. The $38-\mathrm{kHz}$ signals combine with the right and left channel audio signals at the base of Q2 and Q5 respectively. As a result, Q2 and Q5 alternately conduct at a $38-\mathrm{kHz}$ rate and produce the stereo signals, which are coupled through C12. The $38-\mathrm{kHz}$ output from micrologic inverter A3 triggers micrologic flip-flop A4. With both the set side (pin 1) and the reset side (pin 3) of the flip-flop grounded, the flip-flop functions as a complementary flip-flop. Thus, the output from the logic 1 side (pin 7) is a $19-\mathrm{kHz}$ signal that is phase-locked to the $38-\mathrm{kHz}$ subcarrier signals. The 19kHz pilot carrier signal is routed through the PILOT CARRIER switch (S1) to a filter network (C29, C23, L2, and C24), which removes the undesired third harmonic of 19 kHz . From the filter the signal is fed through potentiometer R49, which provides control of the pilot carrier amplitude, through capacitor C14 and a resistor network to the output of the balanced modulator.

Bypass capacitors C25 and C4 provide an ac ground for any signal through Q3 when the transistor conducts. Similar capacitors (C27 and C11) perform the same function in relation to Q6. Potentiometers R12 and R28 provide a means for adjusting the sideband suppression. Of special importance in this circuit is suppression of the $76-\mathrm{kHz}$ harmonics of the $38-\mathrm{kHz}$ subcarrier. The L-R double-sideband signal from the balanced modulator and the 19kHz pilot carrier signal are combined, and capacitor C12 couples the combined signal to the multiplex output, connector pin 16. The $L+R$ amplitude correction (from R16 through C13) adds to the signal coupled through C12, to form the composite stereo baseband signal at the multiplex output.

4.4 SCA GENERATOR A1/A2

4.4.1 General

Signals from the $786 \mathrm{~W}-1$ SCA Generator become part of the audio baseband signal that is used to modulate the carrier. The subcarrier oscillator is a free-running multivibrator, which generates a $67-\mathrm{kHz}$ center frequency that is frequency modulated by the sca audio input signal. During normal stereo broadcast operation, modulation is limited to $\pm 3.5-\mathrm{kHz}$ deviation to avoid interference with the stereo frequencies in the baseband signal. During monophonic broadcasts, $\pm 7.5-\mathrm{kHz}$ deviation is used. The modulation output from the oscillator is filtered to remove unwanted harmonics. Fiefer to figure 4-1, the exciter simplified block diagram, for component relationship and signal flow; refer to figure 7-3, sca generator schematic for circuit detail.

4.4.2 Circuit Analysis

The sca audio input is applied to the sca generator through connector pins 17 and 19 (figure 7-3). The main signal path is through T 1 to audio amplifier Q2, but a portion of the input signal is also applied through S2 to the sca audio input of the vu meter, and through the mute level control (potentiometer R1) to the carrier mute circuits.

Modulation level control R3 selects the sca audio input level, which is coupled through C1 to impedance-matching emitter follower Q1. A standard 75-microsecond preemphasis network (consisting of R7, R8, and C3) and capacitor C4 couple the input signal to audio amplifier Q2. Capacitor C30 and switch S2 couple the amplified audio signal to the modulation input of the vu meter. Switch S 2 selects the correct attenuation (R46 or R47) of the modulation input signal to provide a 0 -vu indication for either $3.5-\mathrm{kHz}$ or $7.5-\mathrm{kHz}$ frequency deviation. The audio signal used to modulate the subcarrier frequency is applied through CR1 to the subcarrier oscillator circuit. Transistors Q4 through Q7 and their associated circuits comprise the astable multivibrator circuit that generates the $67-\mathrm{kHz}$ center frequency subcarrier. Deviation of the subcarrier frequency, as adjusted by modulation level R3, is within the range selected ($\pm 3.5 \mathrm{kHz}$ or $\pm 7.5 \mathrm{kHz}$). The modulated rf output from the oscillator is coupled through C10 and R3 to the base of amplifier Q8.

The carrier mute circuit is connected to the collector circuit of amplifier Q8 through MUTE ENABLE switch S1. Whenever the carrier mute circuit is being used (normally) and the audio input level drops below the level selected by MUTE LEVEL control R1, the output from the sca generator is grounded at the collector of Q8. Positive pulses that are normally applied to the base of Q12 are removed, and Q12 is turned off. As a result, C27 charges through R43 toward +20 volts; and when a potential of +10 volts is reached (in 3 seconds), diode CR9 breaks down and a positive voltage is applied to the base of Q13. Consequently, the collector of Q13 is at ground potential and this ground is applied through S1 to the collector of Q8.

Assuming that the input level is greater than the threshold level selected by MUTE LEVEL control R1, the modulated signal from the subcarrier oscillator is amplified by the directcoupled amplifier (Q8 and Q9) and applied through CR7, R32, and R51 to the filter network. Capacitors C12 through C21 and inductors L1 through L3 comprise a 2 -section bandshaping filter that removes the unwanted harmonics of the $67-\mathrm{kHz}$ subcarrier. Capacitor C22 couples the filtered signal to emitter follower Q10, which provides a low output impedance to feed the SCA subcarrier signal through capacitor C23 and connector pin 43 to the input of the FM modulator card of the exciter.

4.5 FM MODULATOR A4

The FM modulator is a direct FM modulator operating at carrier frequency. A phase-lock automatic frequency control system controls the output frequency within very tight tolerances. Refer to figure 7-5, modulator schematic, for circuit details.

Transistor Q1 is operated class A as a Clapp oscillator with inductor L5 as the oscillator tank coil. The frequency of oscillation is determined by L5 and the net capacitive reactance formed by CR3, CR4, CR5, CR6, C4, C15, C7, C8 and C9. Elements CR3, CR4, CR5 and CR6 are voltage-variable capacitors, or varicaps, whose terminal capacitance is an inverse function of applied voltage. Varicaps CR3 and CR4 are operated with a fixed dc bias as modulators. The bias is adjustable by R5 and is set for best linearity in final test. Varicaps CR5 and CR6 are operated with two independent bias voltages chosen in a manner such that the devices cannot be forward biased. The more positive of the two voltages is controlled by AFC ADJUST control R7 and is used as a fine frequency or phase adjustment for the modulator. The lower of the two voltages is derived from the phase detector loop filter or from a fixed dc voltage for test purposes.

The modulator circuits are temperature compensated by capacitors C7, C8 and C9 to reduce drift. Isolation from the load is enhanced by a T-pad consisting of resistors R18, R19, and R20. Buffer stage Q2 is operated at approximately 500 milliwatts. The collector circuit is coupled to the load through a Pi network consisting of L8, C24, and C25. A resistive pad consisting of $\mathrm{R} 26, \mathrm{R} 27$, and R 28 further isolates load variations from the modulator circuits. An rf sample is derived from the buffer through C22, clipped by diodes CR10 and CR11, and then coupled to U1, a high-speed ECL (emitter-coupled logic) binary divider. The output of the divider is amplified and shaped in an amplifier composed of Q3, Q4 and associated circuits and applied to complementary-MOS divider U2. Divider U1 divides the carrier frequency input by a factor of 16 while divider U2 divides its input by 1024 for a total division of 16,384 .

The reference crystal is enclosed in an oven at 75° centigrade and operates at $1 / 64$ of carrier frequency. The reference oscillator is an untuned device consisting of integrated circuit U5 and associated components. A vernier frequency adjustment is included in the form of a screwdriver adjustment, C38, accessible from the front panel. The capacitor provides sufficient adjustment range to compensate for aging of the crystal.

The output of the oscillator is divided by a factor of 128 in divider U4 and further divided by a factor of 2 in one-half of divider U3. The other half of U3 is a simple flip-flop that acts as a phase detector. The device is clocked by the divided reference frequency signal at a rate $1 / 256$ th of the crystal frequency. The flip-flop is then reset by a narrow pulse derived from the divided modulator output signal. The large division ratio of the modulator divider effectively removes the phase shift associated with the frequency modulation process. The resultant phase deviation at the output of the divider is a very small fraction of the available phase detector range at the lowest modulating frequency of interest.

The output of phase detector U3B is a rectangular phase with a duty cycle that is a function of the time difference of the input clock and reset pulses; hence, a function of the phase angle between the modulator and reference oscillator zero crossings. This pulse is amplified by transistor Q7 and filtered by a network consisting of R53, R54, C33, and C34 to reject the comparison frequency and retain the dc component of the pulse. This dc voltage is displayed on meter M1 as an aid in initial setup and maintenance. A green band is shown on the meter as a recommended operating range, and the meter is set by the AFC ADJUST control R7, a front panel adjustment.

The dynamic characteristics of the loop are established by a loop filter consisting of R15, R16, C10, and C11. The time constants are chosen for best compromise between minimum. lock acquisition time and minimum disturbance of low-frequency phase response of the modulator system.

If phase-lock is lost, the input frequencies to the phase detector will be unequal and a beat note will appear at the output of the detector. This beat note is ac coupled from amplifier Q8 to a $3.5-\mathrm{kHz}$ low-pass filter and further amplified by amplifier Q9. A series of constantamplitude pulses with a repetition rate proportional to the difference frequency appear at Q9 collector. These pulses are rectified and used to turn on transistor Q5, which activates ALARM lamp CR16 and turns off transistor switch Q6. Switch Q6 applies a dc bias to the power amplifier regulator, which squelches the exciter rf output, thus preventing offfrequency operation. A charging current is applied to the AFC loop filter causing capacitor C10 to charge to a value much greater than its normal value. Four-layer diode CR18 conducts when this charge reaches a certain value and discharges C10 to a value much lower
than its normal value. The charging current then slowly recharges C10 and sweeps the oscillator frequency through its normal operating frequency. When the correet frequency is reached, the loop is locked and the charging current is removed. At this time ALARM lamp CR16 is extinguished and the dc bias is removed from the pa power supply allowing normal operation to resume. This circuit allows much faster lock acquisition and more optimum loop time constants for the application to be employed.

Transistors Q10, Q11 and associated components are used to provide a "soft" turn-on and turnoff for the crystal oven heater to minimize transients in the modulator. The circuit is straight forward with Q10 operating as a current amplifier and Q11 operating as a saturated switch.

4. 6 AUDIO/REGULATOR CARD A7

Audio preemphasis for both monaural and stereo operating modes is obtained from feedback shaping in a pair of high-gain, integrated circuit, operational amplifiers. Both channels are fed from balanced 600 -ohm lines through H pads and transfomers to eliminate effects of uneven source impedances. The left channel response is determined by components R57, R58, R59, R60, C20, C21, and C22. All are fixed low tolerance components. Right channel response is determined by similar components with the addition of three vernier elements R41, R45, and R42, which allow trimming overall gain, mid-frequency and highfrequency gain, respectively to permit matching of response of both channels to a very high degree. This is done to minimize linear crosstalk in the stereo mode, which results from uneven gain and phase tracking of the left and right channels.

Variable resistor R30 provides a vernier setting of monaural gain to permit matching that mode to stereo operation.

Relay K1 is included to permit selection of stereo or monaural operation either locally or by remote control.

$4.7 \quad 785 \mathrm{E}-1$ STL INTERFACE CARD A3

The 785E-1 STL Interface Card provides an interface between commonly used composite STL systems or other operating modes such as quadraphonic operation requiring an external baseband input to the modulator. The $785 \mathrm{E}-1$ provides input processing and the necessary gain and phase linearity to accommodate these systems. Refer to figure 7-7. A bridging input of approximately 4700 ohms is provided in a differential input configuration to avoid any degradation of signal-to-noise ratio through ground loops. An adjustable common mode rejection control, $R 4$, is provided to minimize hum. A high frequency phase adjustment, C7, is provided to compensate for minor phase degradation at high frequencies due to receiver and transmitter bandwidth limitation.

Integrated circuit U1 is a low-noise wideband operational amplifier connected as a balanced differential input amplifier. A complementary symmetry power booster stage composed of transistors Q1 and Q2 raises the load impedance to a value suitable for U1. An output pad consisting of R16 and R17 reduces the output level of the amplifier to approximately 200 mV required by the modulator. Capacitor C 7 provides a minor phase adjustment at the high end of the spectrum to compensate for phase errors in the system.

4.8 RF AMPLIFIER A5

The rf amplifier card of the 310Z-2 contains a broadband, solid-state, 3-stage rf amplifier. The FM signal from the rf mixer is amplified to provide an rf output power level of 10 to 20 watts. Refer to figure 7-6 for circuit details.

The first amplifier stage (Q1, figure 7-6) receives the FM input signal (through jack J1) and operates as a class A amplifier, using 20 -volt dc power supplied through filter FL1. The second and third stages (Q2 and Q3) operate as class C amplifiers so that greater efficiency is obtained. All three amplifier stages are set for gain saturation, which is permissible with an FM input signal and provides higher efficiency. Both Q2 and Q3 use a variable 10 - to 26 -volt dc power input through FL2. The rf output power level of the amplifier (adjustable from 10 to 20 watts) is controlied by the level of this variable do power, which is adjustable by the POWER ADJUST control mounted on the front panel. The rf amplifier output is coupled through J 2 to J 1 on the exciter main chassis.

4.9 POWER SUPPLIES

Three power supplies are used in the 310Z-2 exciter. Two are fixed, regulated supplies capable of supplying 24 volts at approximately 700 mA each. One is a variable supply for the rf amplifier. The variable supply supplies up to 26 volts at approximately 2 amperes. All three power supplies are derived from a common, power transformer, rectifier, and filter system. Separate regulators are utilized for each function.

Regulators U1 and U2 are each fixed 24-volt 3-terminal regulators, which supply the basic exciter requirements. Regulator U1 supplies power to the audio and meter amplifier circuits, A1 card, and A4 card. Regulator U2 supplies power to the A2 card, A3 card, and the fixed voltage requirements of the A5 card.

Power for the driver and rf amplifier stages is supplied by an adjustable regulated power supply. This supply consists of an integrated circuit regulator (U2 on the A6 card) and associated components. The regulator supplies base bias voltage for current amplifier transistor Q1, which in turn supplies series pass transistor Q2. The power supply incorporates foldback current limiting to prevent damage to components in the event of short circuits. Overvoltage protection is provided by scr Q7 on the A6 card. Zener diode VR1 sets the point at which the scr fires. This circuit prevents possible damage to the power amplifier transistors in the event of failure of the regulator circuit. When the threshold is exceeded, the scr fires placing a short circuit across the pa power supply. If there is a failure of regulator transistor Q2, then fuse F2 will blow. If the trouble is of a transient nature only, the scr will fire and cause the power supply to go into the current-limiting mode. In this case, simply turning the power supply off and then on will restore proper operation.

Two external control inputs are provided for remote power control and muting purposes. Transistor Q10 on the A6 card serves as an inverter amplifier. The alarm circuit of the modulator supplies a fixed output voltage under alarm conditions, which is coupled to the base of transistor Q10 causing it to saturate and remove the base driver to the power transistors, thus muting the rf output of the exciter.

External mute input, TB1-16, is provided for external power control or muting purposes. It is coupled to the inverting input of regulator U2 on the A6 card. Full or partial muting of the power output is possible by adjustment of the applied voltage.

4. 10 METER AMPLIFIER

The peak voltmeter circuit is contained on audio/regulator card A7 and is used to monitor the following audio levels in the 310Z-2:

Left audio level
Right audio level
Stereo generator baseband output
SCA-1 modulation
SCA-2 modulation
The peak voltmeter circuit is an automatic slideback peak voltmeter type that determines the peak voltage of the complex waveforms monitored by the meter. A basic slideback voltmeter operates by reverse-biasing a diode to a point where the incoming signal can no longer switch on the diode. The reverse dc bias voltage is then equal to the incoming peak voltage (disregarding the intrinsic standoff voltage of the diode). The automatic slideback voltmeter operates in a similar manner by taking the signal voltage that is conducted through the reverse-biased diode, amplifying the signal, rectifying it, and applying the resultant dc as a reverse bias to the diode. The diode will conduct until the dc reverse bias from the amplifiers cuts off diode conduction.

Grounded emitter amplifier Q1 amplifies the wideband complex waveform and feeds it to emitter follower amplifier Q2. The resultant signal is applied to peak detector Q2. At the instant that the first half-cycle of the input complex waveform appears on the base of Q2, the transistor conducts, causing the base signal to appear across load resistor R14. Capacitor C7 couples the signal to peak amplifier Q4. The signal output from Q4 is fed to rectifier Q5, which rectifies the signal and charges capacitor C10 in the negative direction. Capacitor C10 averages the negative output from Q5 into a negative de potential that appears at the base of feedback bias amplifier Q6. With this negative bias present at the base of PNP transistor Q6 the transistor conducts, increasing the voltage drop across resistor R21. This drives the emitter of Q2 in the negative direction, biasing the transistor to the point where only a small signal peak is conducted by Q2. This reduces the signal voltage across load resistor R14 when the succeeding half-cycles of the wideband input waveform arrive at the base of the peak detector transistor. Due to the gain of transistor stages Q2 and Q4, any conduction of transistor Q2 causes the voltage at the base of Q6 to be sustained at a level that permits Q2 to conduct only during a small portion of the signal peaks. The voltage at the collector of Q2 is then proportional to the peak voltage of the complex wideband waveform. In positions 1 through 5 , meter switch S3 connects this voltage through dropping resistor R 23 to the front panel meter.

5.1 GENERAL

The 310Z-2 FM Broadcast Exciter, which contains all solid-state circuits, has been carefully inspected and adjusted at the factory by skilled technicians using special test equipment. Therefore, the $310 \mathrm{Z}-2$ should not be readjusted as part of routine maintenance procedures, but instead should be readjusted only after trouble has definitely been traced to misadjustment. When the $310 \mathrm{Z}-2$ is readjusted, adjustments should be performed in accordance with the procedures outlined in paragraph 5.6 using the recommended test equipment listed in table 5-1.

To ensure peak performance and maximum service life, a regular schedule of routine maintenance should be carried out. For the 310Z-2 this routine maintenance should consist only of cleaning and inspecting, and should occasionally include a check of the minimum performance standards for the 310Z-2 in accordance with paragraph 5.7.

> CAUTION

The 310Z-2 exciter should not be operated without a load connected to the rf output, and should not be operated over any extended period of time into vswr greater than 2:1.

5.2 CLEANING

Clean the 310Z-2 whenever a perceptible quantity of dust accumulates at any point inside the equipment. A solvent consisting of the following mixture may be used as a cleaning material.

Methylene chloride, 25 percent
Perchlorethylene, 5 percent
Drycleaning solvent, 70 percent by volume
Use the following procedure:
a. Remove dust from chassis, panels, and components with a soft-bristled brush.
b. Clean flat surfaces and accessible areas with a lintless cloth moistened with solvent, removing any foreign matter adhering to the equipment. Dry with a clean, dry, lintless cloth.
c. Wash switch contacts and the less accessible areas with solvent lightly applied with a small soft-bristled brush.

Table 5-1. Required Test Equipment.

ITEM	MANUFACTURERS DESIGNATION
Wideband FM modulation monitor	Collins 900C-3, part no. 758-5812-001
Distortion and noise meter	Hewlett-Packard 334A
Audio vtvm	Hewlett-Packard 400L
Vtvm	Hewlett-Packard 410B
Wattmeter	Sierra 164B with 181A/250 plug-in element
Stereo test circuit	Fabricated per figure 5-3
Low-distortion af signal generator	Hewlett-Packard 306A
Oscilloscope	Tektronix 581A
Vertical amplifier	Tektronix type 81
Crosstalk test circuit	Fabricated per figure 5-6
FM frequency monitor	Collins 54N-1
SCA monitor	Collins 900F-1

d. Use a burnishing tool on relay contacts if contacts are corroded or pitted. Apply solvent lightly to relay contacts with a small soft-bristled brush. Dry with a clean, dry, soft-bristled brush.
e. Use a dry, oil-free jet of air to remove any dust accumulated on the modules, circuit cards, in the card cage, or on components located in the area above the cage.

5.3 LUBRICATION

No lubrication is required.

5.4 INSPECTION

Perform periodic visual inspection of the 310Z-2 at least once each month. Inspect all metal parts for rust, corrosion, and general deterioration. Check circuit cards, wiring, and components for signs of overheating. Check the blower and cabinet fan for normal operation. Check all operating controls for smoothness of operation. Check all connections.

5.5 TEST EQUIPMENT REQUIRED

The test equipment listed in table $5-1$, or its equivalent, is required to perform the adjustment and test procedures given in this section.

5.6 ALIGNMENT AND ADJUSTMENT

The maintenance controls for the 310Z-2 that are referenced in the following procedures are shown on figure 5-1 and their function is described in table 5-2.

> CAUTION

Do not attempt to make any adjustment to the 310Z-2 unless trouble has been definitely traced to misadjustment and the recommended test equipment is available.
5.6.1 Power Supply Checks and Adjustments
a. Remove exciter from transmitter or equipment rack, remove rear cover, and connect equipment as shown in figures 5-2 and 5-3.
b. Measure voltage across C3. It should be between 22.5 and 25.5 V dc.
c. Measure voltage across C5. It should be between 22.5 and 25.5 V dc.
d. Connect vtvm across XA5-26 and place POWER switch to ON.
e. Vtvm indication should be between +10 and +26 V dc.
f. Mark position of POWER ADJUST control (R1), and then turn it fully clockwise. Vtvm should indicate +24 to +27 V dc.
g. Turn POWER ADJUST control fully counterclockwise and ensure that vtvm indicates +6 to +10 V dc.
h. Return POWER ADJUST control to its original position, place POWER switch to OFF, and remove vtvm.
i. Replace rear cover.

5.6.2 Modulator Tests

5.6.2.1 AFC Adjustment

Check to see that meter M1 on the modulator module A4 reads in the green area. If not, adjust the AFC ADJUST potentiometer A4R7 so that meter is in the green area. If it cannot be adjusted to the green area, remove the modulator from the card cage and place it on the extender module. Remove the cover and carefully adjust A4R7 to the center of its range (five turns from end stop) then carefully adjust oscillator card A4L5 to center the meter in the green portion of the range. Check adjustment of the AFC ADJUST potentiometer to see that it has control of the meter and that the alarm light is extinguished. Reinstall the cover and replace the module in the card cage.
5.6.2.2 Frequency Adjustment

Adjust FREQ ADJUST capacitor C38 for assigned frequency.

Figure 5-1. 310Z-2 FM Exciter, Maintenance Controls.

Table 5-2. Maintenance Controls.

CONTROL	FUNCTION
786W-1 SC A Generator Card A1/A2	
R3 - modulation level	Sets the sca audio input levels to the sca modulator.
R1-mute level	Sets the minimum audio level that will activate the sca subcarrier mute circuit.
R30 - output level	Sets the sca subcarrier output level.
R19 - frequency	Sets the sca subcarrier frequency.
S1-mute enable	ON position enables mute circuit to remote the $67-\mathrm{kHz}$ sca oscillator output when there is no sca audio input. OFF position disables mute circuit for maintenance.
S2 - 7. 5-KHZ DEV/3.5-KHZ DEV sca deviation switch	7. 5 -KHZ position causes the front panel meter to indicate 0 vu when $S 3$ is in the corresponding SCA-() position and sca subcarrier deviation is 7.5 kHz .
	3.5-KHZ position causes the front panel meter to indicate 0 vu when S 3 is in the corresponding SCA-() position and sca subcarrier deviation is 3.5 kHz .
786V-1 Stereo Generator Card A3	
R12-sideband suppression	Sets the switching point of Q3.
R28-sideband suppression	Sets the switching point of Q6.
R16 - channel separation	Sets the level of the $L+R$ signal from $Q 1$ and Q4 applied to the multiple output to give proper levels for good stereo channel separation.
R49-pilot carrier level	Sets the level of the $19-\mathrm{kHz}$ pilot carrier applied to the multiplex output.
S1-pilot on/off switch	Switches the $19-\mathrm{kHz}$ pilot carrier to the multiplex output.
Modulator Card A4	
R1 - B/B LEVEL	Adjusts baseband modulation sensitivity.
R7-AFC ADJUST	Adjusts free-running frequency of modulator.

Table 5-2. Maintenance Controls (Cont).

CONTROL	FUNC TION
C38 - FREQ adjust	Sets exciter center frequency.
S1 - AFC ON/OFF	Disables AFC system for test purposes.
R5 - mod bias	Sets bias voltage on modulator diodes for best linearity.
L5 - oscillator frequency	Sets coarse frequency modulator.
CR16 - ALARM	Provides out-of-lock indication for AFC circuit.
M1 - AFC LEVEL meter	Displays AFC voltage.
Audio/Meter Regulator Card A7	Matches monaural mode to stereo operation
R10 - meter amplifier adjust	Adjusts meter deflections by 10 percent
R41 - overall gain vernier	Allows matching of both stereo channels
R45 - mid-frequency gain vernier	Same.
R42 - high-frequency gain vernier	Same.

Figure 5-2. Test Equipment Connections to 310Z-2 for Adjustment and Test Procedures.

Figure 5-3. Stereo Test Circuit, Schematic Diagram.

5.6.3 Audio Adjustments - Preemphasis Tracking and Linear Crosstalk

Read and understand procedures for measurement of main and subchannel audio in modulation monitor instruction manual. Connect 310Z-2 exciter as shown in figure 5-2, and set S 2 to stereo mode.
a. Set A7R41, A7R42, and A7R45 to midrange.
b. Set stereo selector to $L=R$ and set audio oscillator for 100 percent total modulation with pilot switch off at 150 Hz .
c. Set monitor to read $\mathrm{L}=-\mathrm{R}$ or subchannel audio. Adjust A7R41 for minimum reading.
d. Set audio oscillator to 1500 Hz and adjust oscillator for 100 percent total modulation. Read subchannel audio and adjust A7R45 for minimum reading.
e. Readjust audio oscillator to 15 kHz and modulation to 100 percent total. Set monitor to read subchannel audio. Adjust A7R42 for minimum reading.
f. Repeat steps b. through e. and optimize all three adjustments for best overall crosstalk.
g. Repeat steps b. through e. without readjustment of A7R41, A7R42, and A7R45 feeding $L=-R$ and reading main channel audio.
h. Make minor readjustments to A7R41, A7R42, and A7R45 if necessary for best overall crosstalk measurements from subchannel to main channel and main channel to subchannel. They should exceed 45 dB for all frequencies from 50 Hz to 15 kHz .
i. Set up exciter in STEREO mode and feed +10 dB mW at 400 Hz into the left channel. Turn on the $19-\mathrm{kHz}$ pilot and adjust it to 9 percent. Read total modulation on the modulation monitor. Adjust B/B LEVEL control A4R1 on the modulator for 100 percent.
j. Set exciter to left mono mode and adjust A7R30 for 100-percent modulation.

5.6.4 SCA Generator Output Level Adjustment

a. With equipment connected as shown in figure 5-2, set MODULATOR METER switch on FM modulation monitor to SCA MOD.
b. Place MUTE ENABLE switch (on sca generator card) to OFF.
c. Adjust OUTPUT LEVEL control R30 for 10 -percent modulation as indicated on the 0 to 30 -percent scale on $F M$ modulator monitor.
d. Turn MUTE ENABLE switch to ON and note that indication on the FM modulation monitor decreases to zero.
5.6.5 SCA Generator Frequency Adjustment
a. With equipment connected as shown in figure 5-2, turn stereo test circuit switch to OFF.
b. Check the sca output frequency as indicated on the sca frequency monitor (Collins $900 \mathrm{~F}-1$ or equivalent).
c. Adjust A1R19 until sca frequency monitor indicates 67 kHz .
5.6.6 Stereo Generator Adjustment
a. Connect equipment as shown in figure 5-2.
b. Set MODE switch on 310Z-2 front panel to STEREO.
c. Set MODULATION METER switch on FM modulator monitor to TOTAL MOD.
d. Place $19-\mathrm{kHz}$ pilot carrier switch on stereo generator card to ON .
e. Turn stereo test circuit (figure 5-3) switch to L position (left modulation only).
f. Set audio oscillator (HP206A or equivalent) to 5000 Hz and adjust the output amplitude for 100 -percent total modulation on FM modulation monitor.
g. Read separation on monitor and adjust $R 16$ on the stereo generator for best separation.

5.7 MINIMUM PERFORMANCE STANDARDS

The 310Z-2 should be tested in accordance with the following procedures after alignment and adjustment. In addition, the following tests should be used to determine if the $310 \mathrm{Z}-2$ is operating properly. Table 5-3 lists those tests that are applicable to monaural, stereo, and SCA functions of the $310 \mathrm{Z}-2$. If it is desired to test the $310 \mathrm{Z}-2$ for monaural only, perform only those tests listed in table 5-3 for monaural, etc.

5.7.1 Output Frequency

a. Connect the equipment as shown in figure 5-2, and turn stereo test circuit switch to OFF.
b. Place POWER switch to ON and measure output frequency. Allow 10 minutes warmup.
c. If the output frequency is incorrect (should be the customer-selected frequency of 88 to 108 MHz), readjust the frequency control on the FM modulator.

5.7.2 Output Power

a. Connect equipment as shown in figure 5-2.
b. Adjust OUTPUT POWER control until rf wattmeter indicates desired power output.

5.7.3 FM Noise

a. Connect the equipment as shown in figure 5-2.
b. Turn MODE switch on 310Z-2 to LEFT.
c. Turn MODULATION METER switch on the FM modulation monitor to TOTAL MOD.
d. Turn stereo test circuit switch to L.
e. Set output of audio oscillator to 400 Hz and 100 -percent modulation as indicated on the FM modulation monitor.
f. Turn DECIBELS switch on FM modulation monitor to 0 and METER switch to MAIN CHAN AUDIO.
g. Turn METER ADJUST control until 0 dB is indicated on FM modulation monitor front panel meter.
h. Remove $400-\mathrm{Hz}$ monaural input signal and turn the DECIBELS switch clockwise until a reading is observed on the meter.
i. The main channel FM noise is the algebraic sum of the DECIBELS switch and the meter indication, and should be no more than -65 dB .
j. Turn METER switch to SUB CHAN AUDIO.
k. The subchannel FM noise is the algebraic sum of the DECIBELS switch setting and the meter indication, and it should be no more than -65 dB .

Table 5-3. Tests.

MONAURAL (PARA NO.)	STEREO (PARA NO.)	$\begin{aligned} & \text { SCA } \\ & \text { (PARA NO.) } \end{aligned}$	TEST
5.7 .1	5.7.1	5.7.1	Output frequency
5.7 .2	5.7 .2	5.7.2	Output power
5.7 .3	5.7 .3	5.7 .3	FM noise
5.7 .4			Frequency response (monaural)
5.7 .5			Harmonic distortion (monaural)
	5.7 .6		Frequency response (stereo)
	5.7 .7		Harmonic distortion (stereo)
	5.7 .8		Subcarrier suppression
	5.7 .9		Channel separation
	5.7.10		Main-to-subchannel crosstalk
	5.7.11		Subchannel-to-main crosstalk
		5.7.12	Sca input test
		5.7.13	Sca noise test
		5.7.14	Sca mute test
		5.7.15	Sca frequency response

5.7.4 Frequency Response (Monaural)

a. With the equipment connected as shown in figure 5-2, set the MOD switch on the 310Z-2 to LEFT and the stereo test circuit switch to L.
b. Set the audio generator (HP206A or equivalent) for a frequency of 50 Hz .
c. Adjust the output of the audio generator for 100 -percent modulation as indicated on the FM modulation monitor.
d. Vary the audio generator and maintain 100 -percent modulation for frequencies of 100 , $400,1000,5000,7500,10,000$ and $15,000 \mathrm{~Hz}$.
e. Ensure that attenuator settings for each frequency are within the limits of the 75microsecond preemphasis curve as defined by the FCC.
5.7.5 Harmonic Distortion (Monaural)
a. Connect the equipment as shown in figure 5-2.
b. Turn MODE switch on the 310Z-2 to the LEFT position.
c. Turn MODULATION METER switch on the FM modulation monitor (900C-3) to TOTAL MOD and the DE-EMPHASIS switch to IN.
d. Turn stereo test circuit switch to L.
e. Set the audio oscillator (HP206A) to 50 Hz , and adjust the output amplitude for 100percent total modulation on the FM modulation monitor.
f. Turn MODULATION METER switch on FM modulation monitor to MAIN CHAN AUDIO.
g. Connect distortion meter (HP334A or equivalent) to the DISTORTION METER jack on the FM modulation monitor.
h. Ensure that the distortion meter indication is not more than 0.25 percent.
i. Repeat steps e. through h. for modulating frequencies of $100,400,1000,5000,7500$, 10,000 and $15,000 \mathrm{~Hz}$.
5.7.6 Frequency Response (Stereo)
a. With equipment connected as shown in figure 5-2, set the MODULATION switch on the 310Z-2 to STEREO and the stereo test circuit switch to LEFT.
b. Turn on $19-\mathrm{kHz}$ pilot.
c. Repeat steps b. through e. of paragraph 5.7.4.
d. Place STEREO TEST CIRCUIT switch to RIGHT.
e. Repeat steps b. through e. of paragraph 5.7.4.
5.7.7 Harmonic Distortion (Stereo)
a. With equipment connected as shown in figure 5-2, place PILOT CARRIER switch to ON.
b. Turn MODE switch on 310Z-2 to STEREO.
c. Turn MODULATION METER switch on 900C-3 to TOTAL MOD, and place DEEMPHASIS switch to OUT.
d. Set switch on stereo test circuit (figure $5-3$) to $L=R$.
e. Set audio oscillator (HP206A) to 50 Hz , and adjust output amplitude for 100 -percent total modulation on $900 \mathrm{C}-3$.
f. Connect distortion meter (HP334A or equivalent) to LEFT AUDIO jack on the 900C-3.
g. Measure and record total distortion for modulating frequencies of $50,100,400$, 1000 , 5000 and 7500 Hz . Maintain modulation on $900 \mathrm{C}-3$ at 100 percent for all frequencies, and distortion should be not more than 0.5 percent.
h. Connect distortion meter to RIGHT AUDIO jack on $900 \mathrm{C}-3$ and repeat step g.

5.7.8 Subcarrier Suppression

a. With equipment connected as shown in figure $5-2$, place PILOT CARRIER switch to OFF。
b. Ensure that there is no input to the SCA generator of the $310 \mathrm{Z}-2$ exciter.
c. Turn DECIBELS switch on FM modulation monitor to 0 .
d. Turn METER switch on FM modulation monitor to TOTAL MOD.
e. Adjust the audio generator for a frequency of $15,000 \mathrm{~Hz}$, and adjust the amplitude for 90 -percent modulation indication on the FM modulation monitor.
f. Turn METER switch on FM modulation monitor to MAIN CHAN AUDIO, and adjust METER ADJUST control until meter indicates 0 dB .
g. Turn METER switch on FM modulation monitor to SUBCAR, and rotate the DECIBELS switch in a clockwise direction until a meter indication is observed.
h. The setting of the DECIBELS switch indicates the subcarrier suppression; it should be at least -45 dB .

5.7.9 Channel Separation

It is recommended that the channel separation test be performed using the Collins $900 \mathrm{C}-3$ FM Modulation Monitor.
a. Connect equipment as shown in figure 5-2.
b. Turn MODULATION switch on front panel of 310Z-2 to STEREO.
c. Turn MODULATION METER switch on FM modulation monitor (900C-3) to TOTAL MOD.
d. Place $19-\mathrm{kHz}$ PILOT CARRIER switch A2 A1 to ON.
e. Turn stereo test circuit switch to L.
f. Set audio generator (HP206A) to 5000 Hz , and adjust output amplitude for 100 -percent total modulation on FM modulation monitor.
g. Set METER switch on front panel of FM modulation monitor to LEFT AUDIO.
h. Set DECIBELS switch on front panel of FM modulation monitor to 0, and turn METER ADJUST control until an indication of 0 dB is obtained on the front panel meter.
i. Switch from left channel modulation to right channel modulation, and turn DECIBELS switch in a clockwise direction until an indication is observed on the front panel meter.
j. Adjust A3R16 for best channel separation indicated on meter. The channel separation is the algebraic sum of the DECIBELS switch setting and the meter indication.
k. Repeat steps f. through j. for frequencies of $50,100,400,1000,5000,7500,10,000$ and $15,000 \mathrm{~Hz}$, except do not readjust A3R16.

1. To obtain channel separation measurements with audio applied to the right channel and measurements taken in the left channel, repeat steps e. through i. and substitute left for right and right for left where these instructions are indicated, but do not readjust A3R16.

5.7.10 Main Channel to Subchannel Nonlinear Crosstalk

a. Connect the equipment as shown in figure 5-4. The crosstalk test circuit shown on figure 5-5 must be fabricated for this test.
b. Set the crosstalk test circuit switch to MAIN and the FREQ RANGE SELECT switch to $50 / 400$.
c. Turn the MODULATION switch on the 310Z-2 to STEREO.
d. Adust the audio generator (HP206A or equivalent) to a frequency of 50 Hz , and adjust the output level for 90 -percent main channel modulation as indicated on the FM modulation monitor.
e. On the FM modulation monitor, place the METER switch to MAIN CHAN AUDIO, turn the DECIBELS switch to 0 , and turn the METER ADJUST control until 0 dB is indicated on the meter.
f. Turn METER switch to SUB CHAN AUDIO, and turn DECIBELS switch clockwise until an indication on the front panel meter of the FM modulation monitor is observed.
g. Turn adjustments on crosstalk test circuit until a null is observed on the FM modulation monitor meter.

> NOTE

These adjustments are critical and require special attention to achieve the proper null.

Figure 5-4. Test Equipment Connections to 310 Z -2 for Crosstalk Test.
h. Crosstalk is the algebraic sum of the DECIBELS switch setting and the meter indication. The main channel into subchannel crosstalk should be not more than -50 dB from 50 to $15,000 \mathrm{~Hz}$.
i. Repeat the above procedure for frequencies of $100,400,1000,5000,7500,10,000$ and $15,000 \mathrm{~Hz}$. Ensure that the proper frequency range is selected by the FREQ RANGE SELECT switch of the crosstalk test circuit.

5.7.11 Subchannel to Main Channel Nonlinear Crosstalk

a. With the test equipment connected as shown in figure 5-4, set the crosstalk test circuit switch to SUB and the FREQ RANGE SELECT switch to $50 / 400$.
b. Adjust the audio generator (HP206A or equivalent) to a frequency of 50 Hz , and adjust the output level for 90 -percent subchannel modulation as indicated on the FM modulation monitor.
c. Turn METER switch to MAIN CHAN AUDIO, and turn DECIBELS switch clockwise until an indication is observed.

5.7.12 SCA Input Test

a. With the equipment connected as shown in figure 5-2, place the MODULATION METER switch on the FM modulation monitor to SCA MOD.

Figure 5-5. Nonlinear Crosstalk Test Circuit, Schematic Diagram.
b. Place MUTE ENABLE switch (on sca generator card) to OFF.
c. Place POWER switch to ON, and adjust SCA OUTPUT LEVEL control A1R30 for an indication of 10 -percent modulation on the 0 - to 30 -percent scale on the meter of the FM modulation monitor.

5.7.13 SCA Noise Test

a. With equipment connected as in figure 5-2, place MUTE DISABLE switch to OFF.
b. Connect audio generator (HP206A) to sca input terminals of exciter.
c. Set the audio generator for a frequency of 400 Hz and an output level of +10 dB mW .
d. Connect ac voltmeter (HP403B) across the audio output (TB1-1 and TB1-2) of the sca modulation monitor ($900 \mathrm{~F}-1$).
e. Record the $400-\mathrm{Hz}$ reference signal level as indicated on the ac voltmeter.
f. Remove the sca input signal from the 310Z-2 exciter, and increase the sensitivity of the ac voltmeter until a reading is indicated.
g. The difference between the levels recorded in steps e. and f. should be not less than 55 dB .

5.7.14 SCA Mute Circuit Test

a. Connect equipment as shown in figure 5-2.
b. Connect audio signal generator (HP206A) to terminals TB1-10 and TB1-12.
c. Place PILOT CARRIER switch on stereo generator card to OFF.
d. Turn stereo test circuit switch to OFF.
e. Adjust audio signal generator connected to terminals TB1-10 and TB1-12 for 400 Hz at 6 dB mW .
f. Turn MUTE LEVEL control A1R1 fully counterclockwise.
g. Observe the sca subcarrier level on the sca monitor.
h. Place MUTE ENABLE switch to ON.
i. After a few seconds, note that the sca subcarrier level is still indicated on sca monitor.
j. Remove input to sca generator card, and observe that sca subcarrier indicated on sca monitor is (decreased to zero) within 3 to 4 seconds.
k. Adjust audio signal generator for 400 Hz at $6-\mathrm{dB} \mathrm{mW}$ input to exciter.

1. Adjust attenuator on signal generator to reduce input level 30 dB .
m. Observe the sca subcarrier on sca monitor, and ensure that is still present after 3 to 4 seconds indicating that mute circuit did not cut off carrier.
n. Remove audio signal generator.
5.7.15 SCA Frequency Response
a. With equipment connected as in figure 5-2, place the pilot carrier switch on stereo generator card to OFF.
b. Connect audio generator (HP206A) to sca input terminals TB1-7 and TB1-9 (21 kHz) or TB1-10 and TB1-12 (67 kHz) of exciter.
c. Turn stereo test circuit switch to OFF.
d. Turn METER switch on sca modulation monitor (900F-1) to sca modulation monaural mode.
e. Set audio generator frequency to 50 Hz , and adjust output amplitude for $3.5-\mathrm{kHz}$ deviation on the sca modulation monitor.
f. While maintaining $3.5-\mathrm{kHz}$ deviation, vary the audio generator frequency to 100,400 , 1000 , and 5000 Hz . The audio generator attenuator settings for each frequency should follow the 75 -microsecond preemphasis curve as specified by the FCC.

5.8 FREQUENCY CHANGE

If it is desired to change the output frequency of the $310 \mathrm{Z}-2$, crystal A4Y1 located in the oven on the modulator card must be changed. Table 5-4 lists the channel frequency versus crystal frequency and the Collins part number for each crystal.

Table 5-4. Crystal Part Number.

CHANNEL FREQ (MHz)	$\begin{aligned} & \text { CRYSTAL } \\ & \text { FREQ } \\ & (\mathrm{kHz}) \end{aligned}$	COLLINS PART NUMBER	$\begin{aligned} & \text { CHANNEL } \\ & \text { FREQ } \\ & \text { (MHz) } \end{aligned}$	CRYSTAL FREQ (kHz)	COLLINS PART NUMBER
88.1	1376.5625	289-7246-010	96.1	1501. 5625	289-7246-410
88.3	1379.6875	289-7246-020	96.3	1504.6875	289-7246-420
88.5	1382.8125	289-7246-030	96.5	1507.8125	289-7246-430
88.7	1385.9375	289-7246-040	96.7	1510.9375	289-7246-440
88.9	1389.0625	289-7246-050	96.9	1514.0625	289-7246-450
89.1	1392. 1875	289-7246-060	97.1	1517.1875	289-7246-460
89.3	1395. 3125	289-7246-070	97.3	1520.3125	289-7246-470
89.5	1398.4375	289-7246-080	97.5	1523.4375	289-7246-480
89.7	1401. 5625	289-7246-090	97.7	1526.5625	289-7246-490
89.9	1404.6875	289-7246-100	97.9	1529.6875	289-7246-500
90.1	1407.8125	289-7246-110	98.1	1532.8125	289-7246-510
90.3	1410.9375	289-7246-120	98.3	1535.9375	289-7246-520
90.5	1414.0625	289-7246-130	98.5	1539.0625	289-7246-530
90.7	1417.1875	289-7246-140	98.7	1542. 1875	289-7246-540
90.9	1420.3125	289-7246-150	98.9	1545.3125	289-7246-550
91.1	1423.4375	289-7246-160	99.1	1548.4375	289-7246-560
91.3	1426.5625	289-7246-170	99.3	1551.5625	289-7246-570
91.5	1429.6825	289-7246-180	99.5	1554.6875	289-7246-580
91.7	1432.8125	289-7246-190	99.7	1557.8125	289-7246-590
91.9	1435.9375	289-7246-200	99.9	1560.9375	289-7246-600
92.1	1439.0625	289-7246-210	100.1	1564.0625	289-7246-610
92.3	1442. 1825	289-7246-220	100.3	1567.1875	289-7246-620
92.5	1445.3125	289-7246-230	100.5	1570.3125	289-7246-630
92.7	1448.4375	289-7246-240	100.7	1573.4375	289-7246-640
92.9	1451. 5625	289-7246-250	100.9	1576.5625	289-7246-650
93.1	1454.6875	289-7246-260	101.1	1579.6875	289-7246-660
93.3	1457.8125	289-7246-270	101.3	1582.8125	289-7246-670
93.5	1460.9375	289-7246-280	101.5	1585.9375	289-7246-680
93.7	1464.0625	289-7246-290	101.7	1589-0625	289-7246-690
93.9	1467. 1875	289-7246-300	101.9	1592. 1875	289-7246-700
94.1	1470.3125	289-7246-310	102.1	1595. 3125	289-7246-710
94.3	1473.4375	289-7246-320	102.3	1598.4375	289-7246-720
94.5	1476. 5625	289-7246-330	102.5	1601. 5625	289-7246-730
94.7	1479.6875	289-7246-340	102.7	1604.6875	289-7246-740
94.9	1482.8125	289-7246-350	102.9	1607.8125	289-7246-750
95.1	1485.9375	289-7246-360	103.1	1610.9375	289-7246-760
95.3	1489.0625	289-7246-370	103.3	1614.0625	289-7246-770
95.5	1492. 1875	289-7246-380	103.5	1617.1875	289-7246-780
95.7	1495. 3125	289-7246-390	103.7	1620.3125	289-7246-790
95.9	1498. 4375	289-7246-400	103.9	1623.4375	289-7246-800

Table 5-4. Crystal Part Number (Cont).

CHANNEL FREQ (MHz)	CRYSTAL FREQ (kHz)	COLLINS PART NUMBER	CHANNEL FREQ (MHz)	CRYSTAL FREQ (kHz)	COLLINS PART NUMBER
104.1	1626.5625	$289-7246-810$	106.1	1657.8125	$289-7246-910$
104.3	1629.6875	$289-7246-820$	106.3	1660.9375	$289-7246-920$
104.5	1632.8125	$289-7246-830$	106.5	1664.0625	$289-7246-930$
104.7	1635.9375	$289-7246-840$	106.7	1667.1875	$289-7246-940$
104.9	1639.0625	$289-7246-850$	106.9	1670.3125	$289-7246-950$
105.1	1642.1875	$289-7246-860$	107.1	1673.4375	$289-7246-960$
105.3	1645.3125	$289-7246-870$	107.3	1676.5625	$289-7246-970$
105.5	1648.4375	$289-7246-880$	107.5	1679.6875	$289-7246-980$
105.5	1651.5625	$289-7246-890$	107.7	1682.8125	$289-7246-990$
105.9	1654.6875	$289-7246-900$	107.9	1685.9375	$289-7247-010$

6.1 GENERAL

This section provides parts lists and parts locations for all electrical components of the 310Z-2 FM Exciter. Figures 6-1 through 6-3 provide general views of the 310Z-2 FM Exciter with various access panels removed. The remaining figures with their corresponding parts lists identify all electrical components. These figures and parts lists are in order according to assembly reference designation.

6.2 ORDERING REPLACEMENT PARTS

Refer to the information inside the front cover for instructions on how to order replacement parts.

B700 3285 Rp
Figure 6-1. 310Z-2 FM Exciter (Sheet 1 of 3).

Figure 6-2. $310 \mathrm{Z}-2$ FM Exciter (Sheet 2 of 3).

87003284 Rp
Figure 6-3. 310Z-2 FM Exciter (Sheet 3 of 3).

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
3102-2 FM EXCITER				622-2184-001
	EXTENDER BOARD			781-53.55-001
Al	SCA GENERATOR 786W-1			772-5338-001
A 2	SCA GENERATOR $786 \mathrm{~W}-1$			772 5338-001
A3	STL INTERFACE 785E-1			62?-2374-001
A3	STEREO GENERATOR $786 \mathrm{~V}-1$			783-6648-001
A4	MODULATOR/EXCITER			627-6695-001
A 5	POWER AMPLIFIER			769-0830-001
A 6	AUDIO/MTR REGULATOR			527-9773-001
B 1	BLOWER			009-1829-030
C 1	CAPACITOR 3900UF 50 V			183-1278-370
C 2	CAPACITOR 3900UF 50 V			$1831278-370$
C 3	CAPACITOR 1000PF 500 V			913-1292-000
C 4	CAPACITOR 1000UF		50 V	183-1282-140
C 5	CAPACITOR 1000UF		50 V	1831282-140
C6	CAPACITOR 1000UF		50 V	183-1282-140
C 7	CAPACITOR 1000PF		500 V	913-1292-000
C 8	CAPACITOR 1000PF		500 V	$9131292-000$
C9	CAPACITOR 1000PF		500 V	913-1292-000
C10	CAPACITOR 1000PF		500 V	$9131292-000$
C11	CAPACITOR 1000PF		500 V	913-1292-000
C 12	CAPACITOR 1000PF		500 V	913 1292-000
C13	CAPACITOR 1000PF		500 V	913-1292-000
C14	CAPACITOR 1000PF		500 V	913 1292-000
C 15	CAPACITOR 1000PF		500 V	913-1292-000
C15	CAPACITOR 1000PF		500 V	913129?-000
C 17	CAPACITOR 1000PF		500 V	913-1292-000
C 18	CAPACITOR 0.lUF		200 V	913-3681-000
C19	CAPACITOR 0.1UF		200 V	913 3681-000
C20	CAPACITOR 0.1UF		200 V	913-3681-000
C21	CAPACITOR IOOPF DIODE INI202			912-2816-000
CRI				353-1889-000
CR2	DIODE INI 202 DIODE INI 202			$3531889-000$
CR3	DIODE$1 N 1202$			353-1889-000
CR4	DIODE IN1202			$3531889-000$
CR5	DIIDE 1 N4003			353-6442-030
CR6	DIODE 1 N4003			353 6442-030
CR7	DISDE 1 N4003			353-6442-030
CR8	DIODE \quad IN4003			353 6442-030
E1	TERMINAL			547-5305-002
E 2	TERMINAL			304-2800-000
E 3	TFRMINAL			304 2800-000
E4	TERMINAL			304-2800-000
E5	TERMINAL			304 2800-000
F6	TERMINAL			304-2800-000
E 7	TERMINAL			304 2800-000
E 8	TERMINAL			304-0116-000
E9	TERMINAL			304 0116-000
E10	TERMINAL			304-1089-000
E11	TERMINAL			304-0116-000
E12	TERMINAL			304-0116-000
F1	FUSE 2ASB			264-0297-000
F2	FUSE$3 A$			264-0928-050
FLl	FILTER, LP			673-1162-020
HT1	HEATSINK			015-3612-010
HT2	HEATSINK			015-3612-020
J1	CONNECTOR			365-0034-000
$J 2$	BNC CONNECTOR			357-9248-010
J^{3}	BNC CONNECTOR			$3579248-010$
J4	BNC CONNECTOR			357-9248-010
J 5	CONNECTOR			357-7109-000
J6	CONNECTOR			357-7109-000
17	CONNECTOR			357-7109-000
P2	TNC CONNECTOR			357-9666-000
P3	TNC CONNECTOR			357-9666-000
P4	TNC CONNECTOR TRANSISTOR $2 N 3054$			357-9666-000
Q 1				352-0581-010

Figure 6-4. Extender Board.

6-8
If You Didn't Get This From My Site,
Then It Was Stolen From... www.SteamPoweredRadio.Com
dy 992ε 00 $\angle 9$

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
SCA GENERATOR 786W-1 A1, A2				772-5338-001
C1	CAPACITOR	6.8UF	35 V	184-6216-000
C2	CAPACITOR	6.8 UF	35 V	184 6216-000
C3	CAPACITOR	0.022 UF	50 V	933-0858-000
C4	CAPACITOR	6.8 UF	35 V	184-6216-000
C5	CAPACITOR	250 UF	40 V	183-2355-150
C6	CAPACITDR	6.8 UF	35 V	184-6216-000
C 7	CAPACITOR	3900 PF	500 V	912-3046-000
C8	CAPACITOR	3900PF	500 V	912 3046-000
C9	CAPACITOR	6.8 UF	35 V	184-6216-000
C10	CAPACITOR	2PF	500 V	916-0076-000
C. 11	CAPACITOR	6.8UF	35 V	184-6216-000
$C 12$	CAPACITOR	500UUF	500 V	912-2977-000
C13	CAPACITOR	100PF	500 V	912-2816-000
C14	CAPACITOR	47PF	500 V	912-2792-000
C 15	CAPACITOR	5PF	500 V	916-0118-000
C16	CAPACITOR	820PF	500 V	912-2995-000
C 17	CAPACITOR	22PF	500 V	912-2768-000
C18	CAPACITOR	120PF	500 V	912-2822-000
C19	CAPACITOR	18PF	500 V	912-2763-000
C20	CAPACITOR	470 PF	500 V	912-2974-000
C21	CAPACITOR	47PF	500 V	912-2792-000
C 22	CAPACITOR	0.0075 UF	75 V	184-9062-040
C23	CAPACITOR	0.033 UF	100 V	184-6326-580
C24	CAPACITOR	22UF	50 V	184-6257-000
C25	CAPACITOR	250UF	40 V	183-2355-150
C26	CAPACITOR	47 UF	35 V	184-6231-000
C27	CAPACITOR	5UF	50 V	183-1162-000
C28	CAPACITOR	6.8UF	35 V	184-6216-000
C29	NOT USED			
630		15 UF	35 V	184-6222-000
C31	CAPACITDR CAPACITOR	220UF	25 V	183-2338-000
CR1	DIDDE	1 N914		353-2906-000
CR2	DIODE	1N995		353-2042-000
CR3	DIODE	1 N995		353 2042-000
CR4	DIODE	1 N. 995		353-2042-000
CR5	DIODE	1 N995		353 2042-000
CR6	NOT USED			
CR7	DIODE	1 N995		353-2042-000
CR8	DIIDE	1N914		353-2906-000
CR9	DIDEE	1N758		353-2723-000
CR10	DIODE	1N914		353-2906-000
CR11	DIODE	1N756A		353-2983-000
CR12	DIODE	1N756A		353 2983-000
CR1 3	DIODE	1 N914		353-2906-000
CR14	DIODE	1 N914		353 2906-000
CR15	DIODE	1N914		353-2906-000
CR16	DIDOE	1N754A		353-2981-000
E1	TERMINAL			306-2222-100
E 2	TERMINAL			306 2222-100
E 3	TERMINAL			306-2222-100
L1	I NDUCTOR	5000 UH		240-0843-000
L2	I NDUCTOR	1000 UH		240-0839-000
L3	INDUCTOR	5000 UH		240-0843-000
Q1	TRANSISTOR	2N3569		352-0629-030
Q2	TRANSISTOR	2N3565		352-0638-010
Q3	TRANSISTOR	2N718A		352-0318-000
Q4	TRANSISTOR	2N3638A		352-0636-020
Q5	TRANSISTOR	2N3638A		352 0636-020
Q6	TRANSISTOR	2N3563		352-0630-010
Q7	TRANSISTOR	2N3563		352 0630-010
Q 8	TRANSISTOR	2N3563		352-0630-010
Q9	TRANSISTOR	2N3646		352-0680-010
Q10	TRANSISTOR TRANSISTOR	2N3565		352-0638-010
Q11		2N3643		352-0713-030
Q12	TRANSISTOR TRANSISTOR	2N3643		352 0713-030
Q13		2N3643		352-0713-030

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
Q14	TRANSISTDR	2N3643		352 0713-030
R1	RESISTOR	50 K	$3 / 4 \mathrm{~W}$	382-0012-130
R2	RESISTOR	4700	$1 / 4 \mathrm{~W}$	745-0773-000
R 3	RESISTOR	5 K	$3 / 4 \mathrm{~W}$	382-0012-090
R 4	RESISTOR	39 K	$1 / 4 \mathrm{~W}$	745-0806-000
R 5	RESISTOR	56 K	$1 / 4 \mathrm{~W}$	745-0812-000
R 6	RESISTOR	1 K	$1 / 4 \mathrm{~W}$	745-0749-000
R 7	RESISTOR	6800	$1 / 4 \mathrm{~W}$	745-0779-000
R 8	RESISTOR	820	$1 / 4 \mathrm{~W}$	745-0746-000
R9	RESISTOR	39 K	$1 / 4 \mathrm{~W}$	745-0806-000
R 10	RESISTOR	4700	$1 / 4 \mathrm{~W}$	745-0773-000
R11	RESISTOR	3900	$1 / 4 \mathrm{~W}$	745-0770-000
R 12	RESISTOR	390	$1 / 4 \mathrm{~W}$	745-0734-000
R13	RESISTOR	270	1/4 W	745-0728-000
R14	RESISTOR	7500	$1 / 2 \mathrm{~W}$	705-7138-000
R15	RESISTOR	6190	$1 / 2 \mathrm{~W}$	705-7134-000
R16	RESISTOR	1780	$1 / 2 \mathrm{~W}$	705-7108-000
R17	RESISTOR	2.15 K	$1 / 2 \mathrm{~W}$	705-7112-000
R18	RESISTOR	33 K	1/4 W	745-0803-000
R19	RESISTOR	5 K	3/4 W	382-0012-090
R 20	RESISTOR	2.15 K	1/2 W	705-7112-000
R 21	RESISTOR	33 K	1/4 W	745-0803-000
R22	RESISTOR	10 K	1/4 W	745-0785-000
R 23	RESISTOR	1 K	$1 / 4 \mathrm{~W}$	745-0749-000
R 24	RESISTOR	1.96 K	$1 / 4 \mathrm{~W}$	705-6610-000
R 25	RESISTOR	1 K	1/4 W	745-0749-000
R 26	RESISTOR	10 K	1/4 W	745-0785-000
R27	RESISTOR	27 K	$1 / 4 \mathrm{~W}$	745-0800-000
R28	RESISTOR	10 K	1/4 W	745-0785-000
R29	RESISTOR	470	1/4 W	745-0737-000
R 30	RESISTOR	50 K	$3 / 4 \mathrm{~W}$	382-0012-130
R 31	RESISTOR	3300	$1 / 4 \mathrm{~W}$	745-0767-000
R 32	RESISTOR	1800	$1 / 4 \mathrm{~W}$	745-0758-000
R 33	RESISTOR	1.62 K	$1 / 4 \mathrm{~W}$	705-6606-000
R 34	RESISTOR	3900	$1 / 4 \mathrm{~W}$	745-0770-000
R 35	RESISTOR	8200	1/4 W	745-0782-000
R 36	RESISTOR	820	1/4 W	745-0746-000
R 37	RESISTOR	10 K	1/4 W	745-0785-000
२ 38	RESISTOR	220 K	$1 / 4 \mathrm{~W}$	745-0833-000
Q 39	RESISTOR	2700	$1 / 4 \mathrm{~W}$	745-0764-000
R 40	RESISTOR	68	1/4 W	745-0707-000
R 41	RESISTOR	33	1/4 W	745-0695-000
R 42	RESISTOR	10 K	1/4 W	745-0785-000
Q 43	RESISTOR	61.9 K	1/4 W	705-6682-000
Q 44	RESISTOR	180	1/4 W	745-0722-000
R 45	RESISTOR	180	1/2 W	745-1321-000
R 46	RESISTOR	82.5 K	$1 / 4 \mathrm{~W}$	705-6688-000
R47	RESISTOR	26.1	1/4 W	705-6664-000
R 48	RESISTOR	5110	1/2 W	705-7130-000
R 49	RESISTOR	5110	1/2 W	705 7130-000
250	RESISTOR	1330	1/2 W	705-7102-000
R 51	RESISTOR	1800	1/4 W	745-0758-000
R 52	RESISTOR	3900	1/4 W	745-0770-000
R 53	```SELECT R53 FROM THE FOLLOWING LIST```			
	RESISTOR	100 K	$1 / 4 \mathrm{~W}$	705-6692-000
	RESISTOR	121 K	1/4 W	705-6696-000
	RESISTOR	147 K	$1 / 4 \mathrm{~W}$	705-6700-000
	RESISTOR	178 K	1/4 W	705-6704-000
	RESISTOR	215 K	$1 / 4 \mathrm{~W}$	705-6708-000
	RESISTOR	274 K	1/4 W	705-6713-000
	RESISTOR	348 K	1/4 W	705-6718-000
	RESISTOR	422 K	$1 / 4 \mathrm{~W}$	705-6722-000
	RESISTOR	511 K	1/4 W	705-6726-000
	RESISTOR	619 K	$1 / 4 \mathrm{~W}$	705-6730-000
	RESISTOR	750 K	1/4 W	705-6734-000
R 54	RESISTOR	6800	1/4 W	745-0779-000
R 55	RESISTOR	3300	$1 / 4 \mathrm{~W}$	745-0767-000
R 56	RESISTOR	10 K	1/4 W	745-0785-000

6-12
If You Didn't Get This From My Site,
Then It Was Stolen From..
www.SteamPoweredRadio.Com

Figure 6-6. STL Interface 785E-1 A3.

6-14

Figure 6-7. Stereo Generator 786V-1 A3.

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
STEREO GENERATOR 786V-1 A3				783-6648-001
A1	INTEGRATED CIRCUIT	ML923		351-7121-010
$\triangle 2$	INTEGRATED CIRCUIT	ML900		351-7121-030
A 3	INTEGRATED CIRCUIT	ML900		351 7121-030
A4	INTEGRATED CIRCUIT	ML923		351-7121-010
C 1	CAPACITOR	47 UF	35 V	184-6231-000
C. 2	CAPACITOR	47 UF	35 V	184 6231-000
C 3	CAPACITOR	47 UF	35 V	184-6231-000
C.4	CAPACITOR	1000 UF	16 V	183-2355-090
C 5	CAPACITOR	47 UF	35 V	184-6231-000
C6	CAPACITOR	47 UF	35 V	184 6231-000
C7	CAPACITOR	1000 PF	500 V	912-3001-000
C8	CAPACITOR	1000 PF	500 V	912 3001-000
C 9	CAPACITOR	47 UF	35 V	184-6231-000
$\bigcirc 10$	CAPACITOR	47 UF	35 V	184 6231-000
C11	CAPACITOR	1000 UF	16 V	183-2355-090
C 12	C $\triangle P A C I T O R$	250 UF	40 V	183-2355-150
C13	CAPACITOR	22 UF	35 V	184-6225-000
C 14	CAPACITOR	250 UF	40 V	183-2355-150
C15	CAPACITOR	250 UF	40 V	183 2355-150
C16	NOT USED			
C17	CAPACITOR	2.2 UF	25 V	913-3812-000
C 18	CAPACITOR	2.2 UF	25 V	913 3812-000
C 19	CAPACITOR	33 PF	500 V	912-2780-000
C. 20	CAPACITOR	820 PF	500 V	912-2995-000
C21	CAPACITOR	3300 PF	500 V	912-3040-000
C22	CAPACITOR	47 UF	35 V	184-6231-000
C23	CAPACITOR	30,000 PF	500 V	912-3131-000
C24	CAPACITOR	3900 PF	500 V	912-3044-000
C25	CAPACITOR	2.2 UF	25 V	913-3812-000
C 26	CAPACITOR	33 PF	500 V	912-2780-000
C 27	CAPACITOR	2.2 UF	25 V	913-3812-000
C28	CAPACITOR	47 PF	500 V	912-2792-000
C29	CAPACITOR	1800 PF	500 V	912-3018-000
CR1	DIODE	1N914		353-2906-000
CR2	DIODE	1 N914		353 2906-000
CR3	DIODE	1N747A		353-2702-000
FLI	FILTER, LOW PASS	15 KHZ		673-1167-010
FL2	FILTER, LOW PASS	15 KHZ		$6731167-010$
1.1	CHOKE, RF	6800 UH		240-2560-000
12	COIL, RF	2 MH		240-0882-010
Q1	TRANSISTOR	2N3643		352-0713-030
02	TRANSISTDR	2N3643		$3520713-030$
03	TRANSISTOR	2N3153		352-0776-010
04	TRANSISTOR	2N3643		352-0713-030
05	TRANSISTOR	2N3643		352.0713-030
06	TRANSISTOR	2N3153		352-0776-010
07	TRANSISTOR	2N3643		352-0713-030
08	TRANSISTOR	2N3643		$3520713-030$
R1	RESISTOR	226	1/8 W	705-0965-000
R2	RESISTOR	226	1/8 W	705 0965-000
R 3	RESISTOR	681	$1 / 8 \mathrm{~W}$	705-0988-000
R4	RESISTOR	649	$1 / 8 \mathrm{~W}$	705-0987-000
R 5	RESISTOR	22 K	$1 / 4 \mathrm{~W}$	745-0797-000
R6	RESISTOR	100	$1 / 8 \mathrm{~W}$	705-0948-000
R 7	RESISTOR	22 K	$1 / 4 \mathrm{~W}$	745-0797-000
R 8	RESISTOR	3300	$1 / 4 \mathrm{~W}$	745-0767-000
R 9	RESISTOR	10 K	$1 / 8 \mathrm{~W}$	705-1044-000
R 10	RESISTOR	464	$1 / 8 \mathrm{~W}$	705-0980-000
R 11	RESISTOR	61.9	$1 / 8 \mathrm{~W}$	705-0938-000
R12	RESISTOR	1 K	$1 / 2 \mathrm{~W}$	382-0008-070
R13	RESISTOR	120 K	$1 / 4 \mathrm{~W}$	745-0824-000
R14	RESISTOR	21.5 K	1/8 W	705-1060-000
R15	RESISTOR	348	$1 / 8 \mathrm{~W}$	705-0974-000
R16	RESISTOR	20 K	$1 / 2 \mathrm{~W}$	38?-0008-450
R17	RESISTOR	226	$1 / 8 \mathrm{~W}$	705-0965-000
R18	RESISTOR	226	$1 / 8 \mathrm{~W}$	705 0965-000

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
R 19	RESISTOR	681	1/8	705-0988-000
R 20	RESISTOR	649	1/8	705-0987-000
R 21	RESISTOR	22 K	$1 / 4$	745-0797-000
R 22	RESISTOR	100	1/8	705-0948-000
R 23	RESISTOR	22 K	$1 / 4$	745-0797-000
R 24	RESISTOR	3300	1/4	745-0767-000
R 25	RESISTOR	10 K	$1 / 8$	705-1044-000
R 25	RESISTOR	464	1/8	705-0980-000
R 27	RESISTOR	61.9	1/8	705-0938-000
R 28	RESISTOR	1 K	1/2	38?-0008-070
R 29	RESISTOR	120 K	1/4	745-0824-000
R 30	RESISTOR	21.5 K	1/8	705-1060-000
R31	RESISTOR	348	$1 / 8$	705-0974-000
R 32	RESISTOR	619	1/4	705-6586-000
R 33	RFSISTOR	560	$1 / 4$	745-0740-000
R34	RESISTOR	56	$1 / 4$	745-0704-000
R 35	RESISTOR	470	$1 / 4$	745-0737-000
R 36	RESISTOR	10 K	$1 / 4$	745-0785-000
R37	RESISTOR	68 K	$1 / 4$	745-0815-000
R 38	RESISTOR	100	$1 / 4$	745-0713-000
R 39	RESISTOR	820	$1 / 4$	745-0746-000
R 40	RESISTOR	100 K	$1 / 4$	745-0821-000
P41	RESISTOR	3900	1/4	745-0770-000
R 42	RESISTOR	470	$1 / 4$	745-0737-000
R 43	RFSI STOR	680	$1 / 4$	745-0743-000
R 44	NOT USED			
R 45	RESI STOR	147	$1 / 8$	705-0956-000
R46	RESISTOR	147	$1 / 8$	$7050956-000$
R47	RESISTOR	470	$1 / 4$	745-0737-000
R 48	RESISTOR	330	$1 / 4$	745-0731-000
R 49	RESISTOR	50	$1 / 2$	382-0008-370
R 50	RESISTOR	270	3W	747-5349-000
S 1	SWITCH, TOGGLE			266-5059-000
XY1	SOCKET, CRYSTAL			292-0215-000
Y 1	CRYSTAL UNIT, QUARTZ			289-7095-020

37003263 Rp

Figure 6-8. Modulator/Exciter A4 (Sheet 1 of 2).

Figure 6-9. Modulator/Exciter A4 (Sheet 2 of 2).

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
MODULATOR/EXCITER A4				627-6695-001
C 1	CAPACITOR	100UF	25 V	184-9103-570
C2	CAPACITOR	100 PF	500 V	912-2816-000
C 3	CAPACITOR	10UF	25 V	184-9103-530
64	CAPACITOR	100 PF	500 V	912-2816-000
C 5	CAPACITOR	10UF	25 V	184-9103-530
C6	CAPACITOR	100 UF	25 V	184-9103-570
C7	CAPACITOR	51 PF	500 V	916-0476-000
C 8	CAPACITOR	22PF	500 V	916-0432-000
C9	CAPACITOR	47 PF	500 V	912-2792-000
610	CAPACITOR	2.2UF	50 V	184-9087-500
611	CAPACITOR	1UF	50 V	184-9087-440
612	CAPACITOR	220 PF	500 V	912-2840-000
[13	CAPACITOR	47 PF	500 V	912-2792-000
614	CAPACITOR	47PF	500 V	912 2792-000
C 15	CAPACITOR	100PF	500 V	912-2816-000
C16	CAPACITOR	100 PF	500 V	912 2816-000
C17	CAPACITOR	100 PF	500 V	912-2816-000
C18	CAPACITOR	18PF	500 V	912-2762-000
C19	CAPACITOR	100 PF	500 V	912-2816-000
C20	C APACITOR	100 PF	500 V	912 2816-000
C 21	CAPACITOR	5 PF	500 V	912-2751-000
C 22	CAPACITOR	5PF	500 V	912 2751-000
$[23$	CAPACITOR	100 PF	500 V	912-2816-000
C 24	CAPACITOR	22PF	500 V	912-2768-000
C 25	CAPACITOR	39PF	500 V	912-2786-000
C26	CAPACITOR	100 PF	500 V	912-2816-000
C. 27	CAPACITOR	IUF	25 V	913-3810-000
628	CAPACITOR	1UF	25 V	913 3810-000
C29	CAPACITOR	1000PF	500 V	912-3001-000
C30	CAPACITOR	0.1 UF	25 V	912-3806-000
C31	CAPACITOR	0.1 UF	200 V	913-3681-000
C32	CAPACITOR	IUF	25 V	913-3810-000
C33	CAPACITOR	0.1 UF	25 V	912-3806-000
C34	CAPACITOR	0.1 UF	25 V	912 3806-000
C35	CAPACITOR	180 UF	25 V	184-8664-000
C36	CAPACITOR	180 UF	25 V	$1848664-000$
C37	CAPACITOR	10 F	25 V	184-9103-530
[38	CAPACITOR	1-60PF	1000 V	922-0609-000
C39	CAPACITOR	18 PF	500 V	912-2762-000
C40	CAPACITOR	180 PF	500 V	912-2834-000
C.41	CAPACITOR	180 PF	500 V	912 2834-000
[42	CAPACITOR	1UF	25 V	913-3810-000
C.43	CAPACITOR	IUF	25 V	913 3810-000
C44	CAPACITOR	1000PF	500 V	913-3208-000
¢ 45	CAPACITOR	1000PF	500 V	913 3208-000
C46	CAPACITOR	1000 PF	500 V	913-3208-000
C47	CAPACITOR	1000 PF	500 V	913 3208-000
C48	CAPACITOR	1000 PF	500 V	913-3208-000
C49	CAPACITOR	1000 PF	500 V	913 3208-000
C50	CAPACITOR	100UF	10 V	184-9086-610
C51	CAPACITOR	180 UF	25 V	184-8664-000
652	CAPACITOR	1000PF	500 V	912-3001-000
653	CAPACITOR	100 PF	500 V	912-2816-000
C54	CAPACITOR	510 PF	500 V	912-2980-000
C55	CAPACITOR	510 PF	500 V	912 2980-000
C56	CAPACITOR	100UF	50 V	183-1281-080
C57	CAPACITOR	0.1 UF	25 V	912-3806-000
C58	CAPACITOR	100 PF	500 V	912-2816-000
659	CAPACITOR	0.1 UF	25 V	912-3806-000
C60	CAPACITOR	560 PF	500 V	912-2983-000
CR1	DIODE	1 N9 14		353-2906-000
CR2	DIODE	1 NQ 14		353 2906-000
CR3	DIODE	MV1404		922-6100-020
CR4	DIODE	MV1404		922 6100-020
CR5	DIODE	MV1650		922-6109-020
CRG	DIODE	MV1650		922 6109-020

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
CR7	DIIDE	1 N9 14		353-2906-000
CR8	DIODE	1 N914		353 2906-000
CR9	DIDDE	1 N9 14		353-2906-000
CR10	DIODE	1 N914		353 2906-000
CRII	DIODE	1 N914		353-2906-000
CR12	DIODE	1 N914		353 2906-000
CR13	DIODE	1N914		353-2906-000
CR14	DIDDE	1N914		353 2906-000
CR15	DIODE	1 N914		353-2906-000
CR16	DIODE			353-3725-060
CR17	DIODE	1 N914		353-2906-000
CR18	DIODE	1N5159		353-6549-020
CR19	DIDDE	1N914		353-2906-000
HSQ1	HEATSINK			352-2619-030
HSQ2	HEATSINK			352 2619-030
L1	INDUCTOR	1.5 UHY		240-2715-150
L2	INDUCTOR	1.5 UHY		$2402715-150$
L3	I NOUCTOR	1.5 UHY		240-2715-150
14	I NDUCTOR	1.5 UHY		$240 \quad 2715-150$
L5	INDUCTOR, VARIABLE			278-1969-620
16	I NDUC TOR	0.47 UHY		240-2715-090
L 7	I NDUCTOR	1.5 UHY		240-2715-150
L8	I NDUCTOR	0.1 UHY		240-2715-010
L9	INDUCTOR	10 HY		678-0205-010
110	I NDUCTOR	150 MHY		240-0276-000
M1	METER	0-50 UA		458-0908-020
P1	CONNECTOR BOARD			627-9766-001
P2	CONNECTOR			357-9210-000
Q1	TRANSISTOR	2N5109		352-0766-010
Q2	TRANSISTOR	2N5109		352 0766-010
03	TRANSISTOR	2N2907A		352-0551-013
Q4	TRANSISTOR	2N2222A		352-0661-023
25	TRANSISTOR	2N2222A		352 0661-023
06	TRANSISTOR	2N2222A		352-0661-023
07	TRANSISTOR	2N2222A		352 0661-023
08	TRANSISTOR	2N2222A		352-0661-023
09	TRANSISTOR	2N2222A		$3520661-023$
010	TRANSISTOR	2N2222A		352-0661-023
011	TRANSISTOR	2N3053		352-0613-010
R1	RESISTOR, VARIABLE	500		376-0254-030
R2	RESISTOR	100	$1 / 4 \mathrm{~W}$	745-0713-000
R 3	RESISTOR	22 K	$1 / 4 \mathrm{~W}$	745-0797-000
84	RESISTOR	47 K	1/4 W	745-0809-000
R 5	RESISTOR, VARIABLE	25 K		380-3761-080
R 6	RESISTOR	22 K	1/4 W	745-0797-000
R 7	RESISTOR, VARIABLE	10 K	$3 / 4 \mathrm{~W}$	381-1802-000
R 8	RESISTOR	22 K	1/4 W	745-0797-000
R 9	RESISTOR	22 K	$1 / 4 \mathrm{~W}$	745-0797-000
R10	RESISTOR	10 K	1/4 W	745-0785-000
R 11	RESISTOR	4.7 K	$1 / 4 \mathrm{~W}$	745-0773-000
812	RESISTOR	1 K	1/4 W	745-0749-000
R13	RESISTOR	10 K	1/4 W	745-0785-000
R 14	RESISTOR	8.2 K	$1 / 4 \mathrm{~W}$	745-0782-000
R 15	RESISTOR	47 K	$1 / 4 \mathrm{~W}$	745-0809-000
R 16	RESISTOR	470 K	1/4 W	745-0845-000
R17	RESISTOR	100	1/2 W	745-1310-000
R 18	RESISTOR	15	1/4 W	745-0683-000
R19	RESISTOR	68	1/4 W	745-0707-000
R 20	RESI STOR	15	1/4 W	745-0683-000
R 21	RESISTOR	150	1 W	745-3317-000
R 22	RESISTOR	3.3 K	1/4 W	745-0767-000
Q 23	RESISTOR	470	1/4 W	745-0737-000
Q24	RES I STOR	47	1/2 W	745-1296-000
Q 25	RESISTOR	4.7 K	$1 / 4 \mathrm{~W}$	745-0773-000
R 26	RESISTOR	22	1/2 W	745-1282-000
R27	RESISTOR	22	$1 / 2 \mathrm{~W}$	$7451282-000$
R 28	RESISTDR	47	$1 / 2 \mathrm{~W}$	745-1296-000
829	RESISTOR	3.9 K	$1 / 4 \mathrm{~W}$	745-0770-000
R 30	RESISTDR	1.2 K	1/4 W	745-0752-000

Figure 6-10. Power Amplifier A5.
parts list

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
POWER AMPLIFIER A5			769-0830-001	
C1	CAPACITOR	680PF	1000 V	913-1194-000
C2	CAPACITOR	470PF	500 V	913-1189-000
¢ 3	CAPACITOR	470 PF	500 V	913 1189-000
C4	CAPACITOR	0.01 FF	100 V	913-3680-000
C5	CAPACITOR	1000 PF	500 V	912-4115-330
c6	CAPACITOR	15 PF	500 V	912-2759-000
${ }^{6} 7$	CAPACITOR	15 PF	500 V	912 2759-000
C8	CAPACITOR	5.5-18PF	350 V	917-1222-000
C9	CAPACITOR	33 PF	500 V	912-2781-000
C10	CAPACITOR	0.01 UF	100 V	913-3680-000
${ }_{6} 11$	CAPACITOR	1000 PF	500 V	912-4115-330
C. 12	CAPACITOR	10PF	500 V	912-2753-000
${ }_{6} 13$	CAPACITOR	18 PF	500 V	912-2762-000
C14	CAPACITDR	5.5-18PF	350 V	917-1222-000
${ }^{C 15}$	CAPACITOR	82PF	500 V	912-2810-000
C16	CAPACITOR	500PF	500 V	912-0667-000
${ }_{6} 17$	CAPACITOR	0.01 CF	100 V	913-3680-000
C18	CAPACITOR	0.1 FF	100 V	913-4240-050
C19	CAPACITOR	1000PF	500 V	912-4115-330
C20	CAPACITOR	110PF	500 V	912-2819-000
C21	CAPACITOR	27 PF	500 V	912-2774-000
C 22	CAPACITOR	5.5-18PF	350 V	917-1222-000
C23	CAPACITOR	100PF	500 V	912-2816-000
624	CAPACITOR	22PF	500 V	912-2769-000
CR1	DIDDE	1 N914		353-2906-000
FL1	FILTER, RI	1300 PF	200 V	241-0332-000
FL2	FILTER, RI	1300 PF	200 V	241-0332-000
FL3	FILTER, RI	1300 PF	200 V	241-0332-000
J1	CONNECTOR	VG1051		357-9210-000
$J 2$	CONNECTOR	VG1051		357-9210-000
L1	COIL, RF	1 UH		240-1590-000
L2	COIL	0.082 UH		776-1882-001
L 3	COIL	0.048 UH		776-1910-001
L4	COIL, RF	0.15 UH		240-1585-000
L. 5	COIL, RF	2.2 UH		240-1654-000
L6	COIL	0.056 UH		776-1911-001
L 7	COIL	0.05 UH		776-1912-001
L8	CHOKE, RF	1.2 UH		240-1505-000
L9	COIL	0.092 UH		776-1883-001
111	COIL, RF	0.15 UH		240-1585-000
Q1	TRANSISTOR	2N3866		35?-0671-010
Q2	TRANSISTOR	2N3375		352-0611-010
03	TRANSISTOR	2N5102		352-0747-010
R 1	RESISTOR	39	$1 / 2 \mathrm{~W}$	745-1293-000
Q2	RESISTOR	22	3 W	747-5327-000
23	RESISTOR	23.7	$1 / 2 \mathrm{~W}$	705-7018-000
R 4	RESISTOR	270	3 W	747-5349-000
R 5	RESISTOR	10	$1 / 4 \mathrm{~W}$	705-6500-000
$R 6$	RESISTOR	100	$1 / 2 \mathrm{~W}$	745-1310-000
R 7	RESISTOR	2	1 W	747-4230-300
R 11	RESISTOR	10	$1 / 2 \mathrm{~W}$	745-1268-000
R 12	RESISTOR	0.5	2.5 W	746-9457-000
R 13	RESISTOR	4.7	$1 / 2 \mathrm{~W}$	745-6279-000
R 14	RESISTOR	10	$1 / 2 \mathrm{~W}$	745-1268-000
R 15	RESISTOR	10	$1 / 2 \mathrm{~W}$	$7451268-000$
R 16	RESISTOR	1 K	$1 / 4 \mathrm{~W}$	745-0749-000
R. 17	RESISTOR	470	$1 / 4 \mathrm{~W}$	745-0737-000

B700 3269 Rp
Figure 6-11. Audio/Mtr Regulator A6.

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
	AUDIO/MTR REGULATOR AG			627-9773-001
C 1	CAPACITOR	22UF	15 V	184-9086-320
C?	CAPACITOR	180UF	25 V	184-8664-000
C3	CAPACITOR	22UF	15 V	184-9086-320
C4	CAPACITOR	0.1 UF	25 V	913-3806-000
C 5	CAPACITOR	10UF	20 V	184-9086-470
C6	CAPACITOR	150 UF	30 V	184-8673-000
C 7	CAPACITOR	22UF	15 V	184-9086-320
C 8	CAPACITOR	180 UF	25 V	184-8664-000
C9	CAPACITOR	22UF	15 V	184-9086-320
C10	CAPACITOR	22UF	15 V	184 9086-320
C 11	CAPACITOR	10UF	20 V	184-9086-470
C 12	CAPACITOR	100 PF	500 V	912-2816-000
C13	CAPACITOR	$0.01 \mathrm{l} F$	50 V	913-3279-110
C14	CAPACITOR	22UF	15 V	184-9086-320
C15	CAPACITOR	22UF	15 V	184 9086-320
C16	CAPACITOR	0.030 UF	500 V	912-3133-000
C17	NOT USFD			
C18	CAPACITOR	180UF	25 V	184-8664-000
C 19	CAPACITOR	180UF	25 V	$1848664-000$
C 20	NOT USED			
C. 21	CAPACITOR	0.030 UF	500 V	912-3133-000
C. 22	CAPACITOR	2?UF	15 V	184-9086-320
C23	CAPACITOR	0.01 UF	50 V	913-3279-110
C2.4	CAPACITOR	1UF	25 V	913-3810-000
C25	CAPACITOR	100 PF	500 V	912-2816-000
C26	CAPACITOR	2200PF	500 V	913-3025-000
C27	CAPACITOR	IUF	25 V	913-3810-000
C28	CAPACITOR	180 UF	25 V	184-8664-000
C 29	CAPACITOR	22UF	15 V	184-9086-320
$\bigcirc 30$	CAPACITOR	0.1 UF	200 V	913-3681-000
C. 31	CAPACITOR	0.1 UF	200 V	913 3681-000
CR1	DIIODE	1N914		353-2906-000
CR2	DIODE	1 N914		353-2906-000
CR3	DIODE	$1 N 4003$		353-6442-030
CR4	DIIODE	1 N914		353-2906-000
CR5	DIDDE	1 N 914		353-2906-000
CR6	DIODE	1 N9 14		353-2906-000
K1	RELAY			970-2420-040
L1	INDUCTOR	6.8 MHY		240-1578-000
01	TRANSISTOR	2N2907A		352-0551-013
Q2	TRANSISTOR	2N2907A		352-0551-013
Q 3	TRANSISTOR	2N2907A		352-0551-013
Q4	TRANSISTOR	2N2907A		352 0551-013
05	TRANSISTOR	2N2907A		352-0551-013
06	TRANSISTOR	2N2907A		352 0551-013
07	TRANSISTOR, SCR	2N4168		353-6485-020
08	TRANSISTOR	2N2222A		352-0661-023
Q9	TRANSISTOR	2N2222A		352 0661-023
Q10	TRANSISTOR	2N3053		352-0613-010
R 1	RESISTOR	8.2 K	$1 / 4 \mathrm{~W}$	745-0782-000
R 2	RESISTOR	47 K	$1 / 4 \mathrm{~W}$	745-0809-000
R 3	RESISTOR	1.2 K	$1 / 4 \mathrm{~W}$	745-0752-000
R 4	RESISTOR	82	$1 / 4 \mathrm{~W}$	745-0710-000
R 5	RESISTOR	5.6 K	$1 / 4 \mathrm{~W}$	745-0776-000
R6	RESISTOR	8.2 K	$1 / 4 \mathrm{~W}$	745-0782-000
R 7	RESISTOR	5.6 K	$1 / 4 \mathrm{~W}$	745-0776-000
R 8	RESISTOR	23.7 K	. 14 W	705-6662-000
R9	RESISTOR	1.2 K	$1 / 4 \mathrm{~W}$	745-0752-000
R 10	RESISTOR, VARIABLE	100		380-3761-010
R 11	RESISTOR	390 K	$1 / 4 \mathrm{~W}$	745-0842-000
R 12	ESISTOR	5.6 K	$1 / 4 \mathrm{~W}$	745-0776-000
R13	RESISTOR	1.2 K	$1 / 4 \mathrm{~W}$	745-0752-000
$\text { R } 14$	ESISTOR ESISTOR	5.6 K	$1 / 4 \mathrm{~W}$	745-0776-000
R 15		3.9 K	$1 / 4 \mathrm{~W}$	745-0770-000
$\text { R } 16$	RESISTOR RESISTOR	12 K	$1 / 4 \mathrm{~W}$	745-0788-000
R 17	RESISTOR	2.2 K	$1 / 4 \mathrm{~W}$	745-0761-000

SYMBOL	DESCRIPTION			COLLINS PART NUMBER
R 18	RESISTOR	10 K	1/4 W	745-0785-000
R 19	RESISTOR	5.6 K	1/4 W	745-0776-000
R 20	RESISTOR	22 K	1/4 W	745-0797-000
R21	RESISTOR	390	1/4 W	745-0734-000
R 22	RESISTOR	1.5 K	1/4 W	745-0755-000
R 23	RESISTOR	12.1 K	1/4 W	705-6648-000
R24	RESISTOR	1.78 K	1/4 W	705-1418-250
R 25	RESISTOR	511	$1 / 4 \mathrm{~W}$	705-1417-690
R 26	RESISTOR	100	$1 / 4 \mathrm{~W}$	745-0713-000
R 27	RESISTOR	220	$1 / 4 \mathrm{~W}$	745-0725-000
R 28	RESISTOR	390	2 H	745-5635-000
829	RESISTOR	100 K	1/4 W	745-0821-000
R 30	RESISTOR, VARIABLE	1 K		380 3761-040
R 31	RESISTOR	22 K	1/4 W	745-0797-000
R 32	RESISTOR	274	$1 / 8 \mathrm{~W}$	705-0969-000
R 33	RESISTOR	274	1/8 W	$7050969-000$
R34	RESISTOR	274	$1 / 8 \mathrm{~W}$	705-0969-000
R 35	RESISTOR	274	$1 / 8 \mathrm{~W}$	$7050989-000$
R 36	RESISTOR	154	$1 / 8 \mathrm{~W}$	705-0957-000
R 37	RESISTOR	2.7 K	$1 / 4 \mathrm{~W}$	745-0764-000
R 38	RESISTOR	10 K	$1 / 8 \mathrm{~W}$	705-1454-630
R 39	RESISTOR	10 K	$1 / 4 \mathrm{~W}$	745-0785-000
R 40	RESISTOR	2.67 K	1/4 W	705-1418-420
R 41	RESISTOR, VARIABLE	2.5 K		380-3761-050
R 42	RESISTOR, VARIABLE	100		380-3761-010
R43	RESISTOR	4.64 K	$1 / 4 \mathrm{~W}$	705-1418-650
R 44	RESISTOR	2.87 K	1/4 W	705-1418-450
+6.5	RESISTOR, VARIABLE	2.5 K		380-3761-200
- 40	RESISTOR	1 K	1/4 W	745-0749-000
R47	RFSI STOR	33	1/4 W	745-0695-000
R 48	RESISTOR	12.1 K	118 W	705-1454-650
$R 49$	RESISTOR	237	$1 / 8 \mathrm{~W}$	705-1454-240
850	RESISTOR	4.22 K	$1 / 8 \mathrm{~W}$	705-1454-540
R 51	RESISTOR	10 K	1/4 W	745-0785-000
8.52	RESISTOR	10 K	1/4 W	$7450785-000$
R 53	RESISTOR	4.22 K	1/8 W	705-1454-540
R 54	RESISTOR	12.1 K	$1 / 8 \mathrm{~W}$	705-1454-650
R 55	RESISTOR	237	$1 / 8 \mathrm{H}$	705-1454-240
P 56	RESISTOR	1 K	$1 / 4 \mathrm{H}$	745-0749-000
057	RESISTOR	3.32 K	1/4 W	705-1418-510
P 58	RESISTOR	100	1/4 W	745-0713-000
R 59	RESISTOR	6.81 K	1/4 W	705-1418-810
R60	RESISTOR	3.32 K	$1 / 4 \mathrm{~W}$	705-1418-510
R61	RESISTOR	33	$1 / 4 \mathrm{~W}$	745-0695-000
R b2	RESI STOR	10 K	1/4 W	745-0785-000
R. 63	RESISTOR	10 K	$1 / 8 \mathrm{~W}$	705-1454-630
R04 4	RESISTOR	2.7 K	$1 / 4 \mathrm{~W}$	745-0764-000
265	RESISTOR	274	$1 / 8 \mathrm{~W}$	705-0969-000
266	RESISTOR	274	$1 / 8 \mathrm{~W}$	$7050969-000$
Q67	RESISTOR	274	1/8 W	705-0969-000
Q68	RESISTOR	274	$1 / 8 \mathrm{~W}$	705 0969-000
R69	RESISTOR	154	$1 / 8 \mathrm{~W}$	705-0957-000
R 70	RESISTOR	1.5 K	$1 / 4 \mathrm{~W}$	745-0755-000
R 71	RESISTOR	1 K	$1 / 4 \mathrm{~W}$	745-0749-000
R 72	RESISTOR	10 K	$1 / 4 \mathrm{~W}$	745-0785-000
R 73	RESISTOR	1 K	$1 / 4 \mathrm{~W}$	745-0749-000
274 $\times 75$	RESISTOR	10 K	$1 / 4 \mathrm{~W}$	745-0785-000
P 75	RESISTOR	470	1 W	745-3338-000
876	RESISTOR	100	2 W	745-5610-000
R 77	RESISTOR	1.8 K	1/4 W	745-0758-000
278	RESISTOR	100	$1 / 4 \mathrm{~W}$	745-0713-000
R 79	RESISTOR	22 K	$1 / 4$ W	745-0797-000
R 80	RESISTOR	39	$1 / 4 \mathrm{~W}$	745-0698-000
R 8.	RESISTOR	10 K	$1 / 4 \mathrm{~W}$	745-0785-000
R 8 ?	RESISTOR	1 K	1/4 W	745-0749-000
R 83	RESISTOR	10 K	1/4 W	745-0785-000
RT1	RESISTOR, THERMAL	1 K	1 W	714-1732-000
RT2	RESISTOR, THERMAL	10 K	1 W	714-0182-000
T1	TRANSFORMER, AUDIO INPUT			667-0187-030

SYMBOL	DESCRIPTION		COLLINS PART NUMBER
T2 U1 U2 VR1 VR2 XK1 101 $\times u 2$ $\times \cup 2$	TRANSFORMER, AUDIO INPUT INTEGRATED CIRCUIT integrated circuit ZENER DIDDE ZENER DIDDE SOCKET, RELAY SOCKET, INTEGRATED CIRCUIT INSULATOR, DISC	A739C uA723 1N4751A 1N4753A	667 0187-030 351-1175-010 351-1035-040 353-6481-470 353-6481-510 220-0027-010 $220-0001-010$ $352-9552-060$

${ }^{8528} 101 \mathrm{Rp} \mathrm{B}$

PANEL MOUNT GURENT

2 UNEESOTHENV SE SPECI-

Figure 7-6. RF Amplifier A5, Schematic Diagram.

Figure 7-7. 785E-1 STL Interface Cad A3, Schematic Diagram.

